Learn More
Radial glial cells and astrocytes function to support the construction and maintenance, respectively, of the cerebral cortex. However, the mechanisms that determine how radial glial cells are established, maintained, and transformed into astrocytes in the cerebral cortex are not well understood. Here, we show that neuregulin-1 (NRG-1) exerts a critical role(More)
Reelin, the product of the reeler gene (D'Arcangelo et Beth Israel Deaconess Medical Center al., 1995), acts non cell autonomously (Miyata et al., Harvard Institutes of Medicine 1997), and the protein is synthesized and secreted in ‡ Department of Medicine the cerebral cortex predominantly by the Cajal-Retzius Children's Hospital cell of the marginal zone,(More)
Recognizing a deficiency of indispensable amino acids (IAAs) for protein synthesis is vital for dietary selection in metazoans, including humans. Cells in the brain's anterior piriform cortex (APC) are sensitive to IAA deficiency, signaling diet rejection and foraging for complementary IAA sources, but the mechanism is unknown. Here we report that the(More)
OBJECTIVE Loss-of-function mutations in Perk (EIF2AK3) result in permanent neonatal diabetes in humans (Wolcott-Rallison Syndrome) and mice. Previously, we found that diabetes associated with Perk deficiency resulted from insufficient proliferation of beta-cells and from defects in insulin secretion. A substantial fraction of PERK-deficient beta-cells(More)
Mice that are mutant for Reelin or Dab1, or doubly mutant for the VLDL receptor (VLDLR) and ApoE receptor 2 (ApoER2), show disorders of cerebral cortical lamination. How Reelin and its receptors regulate laminar organization of cerebral cortex is unknown. We show that Reelin inhibits migration of cortical neurons and enables detachment of neurons from(More)
Reperfusion after global brain ischemia results initially in a widespread suppression of protein synthesis in neurons that is due to inhibition of translation initiation as a result of the phosphorylation of the alpha-subunit of eukaryotic initiation factor 2 (eIF2). To address the role of the eIF2alpha kinase RNA-dependent protein kinase-like endoplasmic(More)
BACKGROUND Deficiency of the PERK eIF2 alpha kinase in humans and mice results in postnatal exocrine pancreatic atrophy as well as severe growth and metabolic anomalies in other organs and tissues. To determine if the exocrine pancreatic atrophy is due to a cell-autonomous defect, the Perk gene was specifically ablated in acinar cells of the exocrine(More)
BACKGROUND The ER chaperone GRP78/BiP is a homolog of the Hsp70 family of heat shock proteins, yet GRP78/BiP is not induced by heat shock but instead by ER stress. However, previous studies had not considered more physiologically relevant temperature elevation associated with febrile hyperthermia. In this report we examine the response of GRP78/BiP and(More)
BACKGROUND A deficiency in Perk (EIF2AK3) causes multiple neonatal defects in humans known as the Wolcott Rallison syndrome. Perk KO mice exhibit the same array of defects including permanent neonatal diabetes (PND). PND in mice was previously shown by us to be due to a decrease in beta cell proliferation and insulin secretion. The aim of this study was to(More)
BACKGROUND Insulin synthesis and cell proliferation are under tight regulation in pancreatic β-cells to maintain glucose homeostasis. Dysfunction in either aspect leads to development of diabetes. PERK (EIF2AK3) loss of function mutations in humans and mice exhibit permanent neonatal diabetes that is characterized by insufficient β-cell mass and reduced(More)