Learn More
Glucosinolates are sulfur-rich, anionic natural products that upon hydrolysis by endogenous thioglucosidases called myrosinases produce several different products (e.g., isothiocyanates, thiocyanates, and nitriles). The hydrolysis products have many different biological activities, e.g., as defense compounds and attractants. For humans these compounds(More)
Glucosinolates are sulfur-rich secondary metabolites characteristic of the Brassicales order with important biological and economic roles in plant defense and human nutrition. Application of systems biology tools continues to identify genes involved in the biosynthesis of glucosinolates. Recent progress includes genes in all three phases of the pathway,(More)
BACKGROUND Glucosinolates are natural metabolites in the order Brassicales that defend plants against both herbivores and pathogens and can attract specialized insects. Knowledge about the genes controlling glucosinolate regulation is limited. Here, we identify three R2R3 MYB transcription factors regulating aliphatic glucosinolate biosynthesis in(More)
The wide range of biological activities of products derived from the glucosinolate-myrosinase system is biologically and economically important. On the one hand, the degradation products of glucosinolates play an important role in the defence of plants against herbivores. On the other hand, these compounds have toxic (e.g. goitrogenic) as well as protective(More)
Glucosinolates are natural plant products that function in the defense toward herbivores and pathogens. Plant defense is regulated by multiple signal transduction pathways in which salicylic acid (SA), jasmonic acid, and ethylene function as signaling molecules. Glucosinolate content was analyzed in Arabidopsis wild-type plants in response to single or(More)
Glucosinolates are natural plant products known as flavor compounds, cancer-preventing agents, and biopesticides. We report cloning and characterization of the cytochrome P450 CYP79B2 from Arabidopsis. Heterologous expression of CYP79B2 in Escherichia coli shows that CYP79B2 catalyzes the conversion of tryptophan to indole-3-acetaldoxime. Recombinant(More)
The G-box (CACGTG) and H-box (CCTACC) cis elements function in the activation of phenylpropanoid biosynthetic genes involved in the elaboration of lignin precursors, phytoalexins and the secondary signal salicylic acid as early responses to pathogen attack. We have isolated a soybean cDNA encoding a novel bZIP protein, G/HBF-1, which binds to both the G-box(More)
Genomic approaches have accelerated the study of the quantitative genetics that underlie phenotypic variation. These approaches associate genome-scale analyses such as transcript profiling with targeted phenotypes such as measurements of specific metabolites. Additionally, these approaches can help identify uncharacterized networks or pathways. However,(More)
In the glucosinolate pathway, the postoxime enzymes have been proposed to have low specificity for the side chain and high specificity for the functional group. Here, we provide biochemical evidence for the functional role of the two cytochromes P450, CYP83A1 and CYP83B1, from Arabidopsis in oxime metabolism in the biosynthesis of glucosinolates. In a(More)
We report characterization of SUPERROOT1 (SUR1) as the C-S lyase in glucosinolate biosynthesis. This is evidenced by selective metabolite profiling of sur1, which is completely devoid of aliphatic and indole glucosinolates. Furthermore, following in vivo feeding with radiolabeled p-hydroxyphenylacetaldoxime to the sur1 mutant, the corresponding C-S lyase(More)