Barbara A. Burleigh

Learn More
Mammalian cell invasion by the protozoan parasite, Trypanosoma cruzi, is facilitated by the activation of host cell phosphatidylinositol 3 (PI 3)-kinases. We demonstrate that the well-characterized Ca2+-regulated lysosome-mediated parasite entry pathway is abolished by wortmannin pretreatment. In addition, we have characterized a novel route of T. cruzi(More)
Cardiac hypertrophy is a common response to injury and hemodynamic stress and an important harbinger of heart failure and death. Herein, we identify the Kruppel-like factor 15 (KLF15) as an inhibitor of cardiac hypertrophy. Myocardial expression of KLF15 is reduced in rodent models of hypertrophy and in biopsy samples from patients with pressure-overload(More)
An early event in the Trypanosoma cruzi cell invasion process, the recruitment of host lysosomes, led us to investigate the involvement of signal transduction. Infective trypomastigotes were found to contain a soluble Ca2+-signaling activity for mammalian cells that is sensitive to protease inhibitors. Inhibitor and substrate utilization profiles were used(More)
IFN-γ is a major cytokine that mediates resistance against the intracellular parasite Toxoplasma gondii. The p65 guanylate-binding proteins (GBPs) are strongly induced by IFN-γ. We studied the behavior of murine GBP1 (mGBP1) upon infection with T. gondii in vitro and confirmed that IFN-γ-dependent re-localization of mGBP1 to the parasitophorous vacuole (PV)(More)
Trypanosoma cruzi, the protozoan parasite that causes Chagas' disease in humans, is capable of invading and replicating within a wide variety of nucleated mammalian cell types. Host cell invasion by infective T. cruzi trypomastigotes is governed by parasite-triggered activation of host cell signaling pathways. Recent studies highlighting a role for host(More)
Mammalian cell invasion by the protozoan pathogen Trypanosoma cruzi is critical to its survival in the host. To promote its entry into a wide variety of non-professional phagocytic cells, infective trypomastigotes exploit an arsenal of heterogenous surface glycoproteins, secreted proteases and signalling agonists to actively manipulate multiple host cell(More)
Trypomastigotes, the infective stages of the intracellular parasite Trypanosoma cruzi, induce rapid and repetitive cytosolic free Ca2+ transients in fibroblasts. Buffering or depletion of intracellular free Ca2+ inhibits cell entry by trypomastigotes, indicating a role for this signaling event in invasion. We show here that the majority of the(More)
An early event in the Trypanosoma cruzi cell invasion process, the recruitment of host lysosomes, led us to investigate the involvement of signal transduction. Infective trypomastigotes were found to contain a soluble Ca 2 1 -signaling activity for mammalian cells that is sensitive to protease inhibitors. Inhibitor and substrate utilization profiles were(More)
The protozoan parasite Trypanosoma cruzi must enter cells of its vertebrate host in order to replicate. Once this is accomplished, the infective trypomastigotes can invade many different cell types from several host species. This observation is in agreement with the parasite's wide natural host range. Studies performed with cultured mammalian cells in vitro(More)
Trypanosoma cruzi, the intracellular protozoan parasite that causes Chagasic cardiomyopathy, elicits a robust hypertrophic response in isolated cardiomyocytes. Previous studies established that T. cruzi-elicited cardiomyocyte hypertrophy is mediated by interleukin-1beta produced by infected cardiomyocyte cultures. Here, we define key upstream signaling(More)