Learn More
Metabolic adaptation is essential for cell survival during nutrient deprivation. We report that eukaryotic elongation factor 2 kinase (eEF2K), which is activated by AMP-kinase (AMPK), confers cell survival under acute nutrient depletion by blocking translation elongation. Tumor cells exploit this pathway to adapt to nutrient deprivation by reactivating the(More)
Inhibition of distinct ubiquitin E3 ligases might represent a powerful therapeutic tool. ITCH is a HECT domain-containing E3 ligase that promotes the ubiquitylation and degradation of several proteins, including p73, p63, c-Jun, JunB, Notch and c-FLIP, thus affecting cell fate. Accordingly, ITCH depletion potentiates the effect of chemotherapeutic drugs,(More)
Defense mechanisms of plants against pathogens often entail cell wall strengthening, ethylene biosynthesis, expression of pathogen-related proteins and hypersensitive responses (HR). Pathogen-derived elicitors trigger these defense responses. The Elicitor Ethylene-inducing Xylanase (EIX) elicits HR and other plant defense responses in some tobacco and(More)
1. Ras signaling and oncogenesis depend on the dynamic interplay of Ras with distinctive plasma membrane (PM) microdomains and various intracellular compartments. Such interaction is dictated by individual elements in the carboxy-terminal domain of the Ras proteins, including a farnesyl isoprenoid group, sequences in the hypervariable region (hvr)-linker,(More)
The Hace1-HECT E3 ligase is a tumor suppressor that ubiquitylates the activated GTP-bound form of the Rho family GTPase Rac1, leading to Rac1 proteasomal degradation. Here we show that, in vertebrates, Hace1 targets Rac1 for degradation when Rac1 is localized to the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase holoenzyme. This event blocks de(More)
H-Ras is a binary switch that is activated by multiple co-factors and triggers several key cellular pathways one of which is MAPK. The specificity and magnitude of downstream activation is achieved by the spatio-temporal organization of the active H-Ras in the plasma membrane. Upon activation, the GTP bound H-Ras binds to Galectin-1 (Gal-1) and becomes(More)
The ubiquitin proteasome system (UPS) plays a role in the regulation of most cellular pathways, and its deregulation has been implicated in a wide range of human pathologies that include cancer, neurodegenerative and immunological disorders and viral infections. Targeting the UPS by small molecular regulators thus provides an opportunity for the development(More)
BACKGROUND Protein aggregation is a hallmark of many neurodegenerative diseases and has been linked to the failure to degrade misfolded and damaged proteins. In the cell, aberrant proteins are degraded by the ubiquitin proteasome system that mainly targets short-lived proteins, or by the lysosomes that mostly clear long-lived and poorly soluble proteins.(More)
Immune cells establish dynamic adhesive cell-cell interactions at a specific contact region, termed the immunological synapse (IS). Intriguing features of the IS are the formation of regions of plasma membrane fusion and the intercellular exchange of membrane fragments between the conjugated cells. It is not known whether upon IS formation, intact(More)