Learn More
The sifting and winnowing of DNA sequence that occur during evolution cause nonfunctional sequences to diverge, leaving phylogenetic footprints of functional sequence elements in comparisons of genome sequences. We searched for such footprints among the genome sequences of six Saccharomyces species and identified potentially functional sequences. Comparison(More)
Chromosome correlation maps display correlations between the expression patterns of genes on the same chromosome. Using these maps, we show here that adjacent pairs of genes, as well as nearby non-adjacent pairs of genes, show correlated expression independent of their orientation. We present specific examples of adjacent pairs with highly correlated(More)
Transcription factor binding sites are being discovered at a rapid pace. It is now necessary to turn attention towards understanding how these sites work in combination to influence gene expression. Quantitative models that accurately predict gene expression from promoter sequence will be a crucial part of solving this problem. Here we present such a model,(More)
Ohno [Ohno, S. (1970) in Evolution by Gene Duplication, Springer, New York] proposed that gene duplication with subsequent divergence of paralogs could be a major force in the evolution of new gene functions. In practice the functional differences between closely related homologues produced by duplications can be subtle and difficult to separate(More)
A major goal in computational biology is to develop models that accurately predict a gene's expression from its surrounding regulatory DNA. Here we present one class of such models, thermodynamic state ensemble models. We describe the biochemical derivation of the thermodynamic framework in simple terms, and lay out the mathematical components that comprise(More)
Transcription factor binding sites (TFBS) are being discovered at a rapid pace 1, 2. We must now begin to turn our attention towards understanding how these sites work in combination to influence gene expression. Quantitative models that accurately predict gene expression from promoter sequence 3-5 will be a crucial part of solving this problem. Here we(More)
Completing the annotation of a genome sequence requires identifying the regulatory sequences that control gene expression. To identify these sequences, we developed an algorithm that searches for short, conserved sequence motifs in the genomes of related species. The method is effective in finding motifs de novo and for refining known regulatory motifs in(More)
Interactions among genes and the environment are a common source of phenotypic variation. To characterize the interplay between genetics and the environment at single nucleotide resolution, we quantified the genetic and environmental interactions of four quantitative trait nucleotides (QTN) that govern yeast sporulation efficiency. We first constructed a(More)
The expression of most genes is regulated by multiple transcription factors. The interactions between transcription factors produce complex patterns of gene expression that are not always obvious from the arrangement of cis-regulatory elements in a promoter. One critical element of promoters is the TATA box, the docking site for the RNA polymerase(More)
When a cell's environment changes, a large transcriptional response often takes place. The exquisite sensitivity and specificity of these responses are controlled in large part by the combinations of cis-regulatory elements that reside in gene promoters and adjacent control regions. Here, we present a study aimed at accurately modeling the relationship(More)