Learn More
The brain produces two brain-derived neurotrophic factor (BDNF) transcripts, with either short or long 3' untranslated regions (3' UTRs). The physiological significance of the two forms of mRNAs encoding the same protein is unknown. Here, we show that the short and long 3' UTR BDNF mRNAs are involved in different cellular functions. The short 3' UTR mRNAs(More)
The melanocortin-4 receptor (MC4R) is critically involved in regulating energy balance, and obesity has been observed in mice with mutations in the gene for brain-derived neurotrophic factor (BDNF). Here we report that BDNF is expressed at high levels in the ventromedial hypothalamus (VMH) where its expression is regulated by nutritional state and by MC4R(More)
To examine functions of TrkB in the adult CNS, TrkB has been removed from neurons expressing CaMKII, primarily pyramidal neurons, using Cre-mediated recombination. A floxed trkB allele was designed so that neurons lacking TrkB express tau-beta-galactosidase. Following trkB deletion in pyramidal cells, their dendritic arbors are altered, and cortical layers(More)
Expression of the brain-derived neurotrophic factor (BDNF) is under tight regulation to accommodate its intricate roles in controlling brain function. Transcription of BDNF initiates from multiple promoters in response to distinct stimulation cues. However, regardless which promoter is used, all BDNF transcripts are processed at two alternative(More)
Substantial evidence indicates that brain-derived neurotrophic factor (BDNF) plays a crucial role in synaptic plasticity. Long-lasting synaptic plasticity is restricted to active synapses and requires new protein synthesis. Recent work has identified local protein synthesis as an important source for new protein during the expression of enduring synaptic(More)
The early pathophysiology of diabetic retinopathy and the involvement of neural and vascular malfunction are poorly understood. Glial cells provide structural and metabolic support for retinal neurons and blood vessels, and the cells become reactive in certain injury states. We therefore used the streptozotocin rat model of short-term diabetic retinopathy(More)
The relationship between neuronal glutamate turnover, the glutamate/glutamine cycle and de novo glutamate synthesis was examined using two different model systems, freshly dissected rat retinas ex vivo and in vivo perfused rat brains. In the ex vivo rat retina, dual kinetic control of de novo glutamate synthesis by pyruvate carboxylation and transamination(More)
Although it is well established that both follicular assembly and the initiation of follicle growth in the mammalian ovary occur independently of pituitary hormone support, the factors controlling these processes remain poorly understood. We now report that neurotrophins (NTs) signaling via TrkB receptors are required for the growth of newly formed(More)
Because it is well known that excess branched-chain amino acids (BCAAs) have a profound influence on neurological function, studies were conducted to determine the impact of BCAAs on neuronal and astrocytic metabolism and on trafficking between neurons and astrocytes. The first step in the metabolism of BCAAs is transamination with alpha-ketoglutarate to(More)
The ventromedial hypothalamic nucleus (VMN) is known to mediate autonomic responses in feeding and reproductive behaviors. To date, the most definitive molecular marker for the VMN is the orphan nuclear receptor steroidogenic factor-1 (SF-1). However, it is unclear whether SF-1 functions in the VMN as it does in peripheral endocrine organ development where(More)