Learn More
Deep neural networks are able to learn powerful representations from large quantities of labeled input data, however they cannot always generalize well across changes in input distributions. Domain adaptation algorithms have been proposed to compensate for the degradation in performance due to domain shift. In this paper, we address the case when the target(More)
To produce images that are suitable for display, tone-mapping is widely used in digital cameras to map linear color measurements into narrow gamuts with limited dynamic range. This introduces non-linear distortion that must be undone, through a radiometric calibration process, before computer vision systems can analyze such photographs radiometrically. This(More)
The most successful 2D object detection methods require a large number of images annotated with object bounding boxes to be collected for training. We present an alternative approach that trains on virtual data rendered from 3D models, avoiding the need for manual labeling. Growing demand for virtual reality applications is quickly bringing about an(More)
Crowdsourced 3D CAD models are easily accessible online, and can potentially generate an infinite number of training images for almost any object category. We show that augmenting the training data of contemporary Deep Convolutional Neural Net (DCNN) models with such synthetic data can be effective, especially when real training data is limited or not well(More)
Crowdsourced 3D CAD models are becoming easily accessible online, and can potentially generate an infinite number of training images for almost any object category. We show that augmenting the training data of contemporary Deep Convolutional Neural Net (DCNN) models with such synthetic data can be effective, especially when real training data is limited or(More)
In this chapter, we present CORrelation ALignment (CORAL), a simple yet effective method for unsupervised domain adaptation. CORAL minimizes domain shift by aligning the second-order statistics of source and target distributions, without requiring any target labels. In contrast to subspace manifold methods, it aligns the original feature distributions of(More)