Learn More
Molecular interaction databases can be used to study the evolution of molecular pathways across species. Querying such pathways is a challenging computational problem, and recent efforts have been limited to simple queries (paths), or simple networks (forests). In this paper, we significantly extend the class of pathways that can be efficiently queried to(More)
In analyzing the proteome using mass spectrometry, the mass values help identify the molecules, and the intensities help quantify them, relative to their abundance in other samples. Peptides that are shared across different protein sequences are typically discarded as being uninformative w.r.t each of the parent proteins. In this paper, we investigate the(More)
ATM is a protein kinase that initiates a well-characterized signaling cascade in cells exposed to ionizing radiation (IR). However, the role for ATM in coordinating critical protein interactions and subsequent exchanges within DNA damage response (DDR) complexes is unknown. We combined SILAC-based tandem mass spectrometry and a subcellular fractionation(More)
Genes with a common function are often hypothesized to have correlated expression levels in mRNA expression data, motivating the development of clustering algorithms for gene expression data sets. We observe that existing approaches do not scale well for large data sets, and indeed did not converge for the data set considered here. We present a novel(More)
In mass spectrometry-based protein quantification, peptides that are shared across different protein sequences are often discarded as being uninformative with respect to each of the parent proteins. We investigate the use of shared peptides which are ubiquitous (~50% of peptides) in mass spectrometric data-sets for accurate protein identification and(More)
  • 1