Learn More
In this work, we propose to use attributes and parts for recognizing human actions in still images. We define action attributes as the verbs that describe the properties of human actions, while the parts of actions are objects and poselets that are closely related to the actions. We jointly model the attributes and parts by learning a set of sparse bases(More)
In this paper, we study the problem of fine-grained image categorization. The goal of our method is to explore fine image statistics and identify the discriminative image patches for recognition. We achieve this goal by combining two ideas, discriminative feature mining and randomization. Discriminative feature mining allows us to model the detailed(More)
Detecting objects in cluttered scenes and estimating articulated human body parts are two challenging problems in computer vision. The difficulty is particularly pronounced in activities involving human-object interactions (e.g. playing tennis), where the relevant object tends to be small or only partially visible, and the human body parts are often(More)
We introduce a 120 class Stanford Dogs dataset, a challenging and large-scale dataset aimed at fine-grained image categorization. Stanford Dogs includes over 22,000 annotated images of dogs belonging to 120 species. Each image is annotated with a bounding box and object class label. Fig. 1 shows examples of images from Stanford Dogs. This dataset is(More)
Psychologists have proposed that many human-object interaction activities form unique classes of scenes. Recognizing these scenes is important for many social functions. To enable a computer to do this is however a challenging task. Take people-playing-musical-instrument (PPMI) as an example; to distinguish a person playing violin from a person just holding(More)
This paper introduces a new formulation for discrete image labeling tasks, the Decision Tree Field (DTF), that combines and generalizes random forests and conditional random fields (CRF) which have been widely used in computer vision. In a typical CRF model the unary potentials are derived from sophisticated random forest or boosting based classifiers,(More)
Detecting objects in cluttered scenes and estimating articulated human body parts from 2D images are two challenging problems in computer vision. The difficulty is particularly pronounced in activities involving human-object interactions (e.g., playing tennis), where the relevant objects tend to be small or only partially visible and the human body parts(More)
Fine-grained categorization refers to the task of classifying objects that belong to the same basic-level class (e.g. different bird species) and share similar shape or visual appearances. Most of the state-of-the-art basic-level object classification algorithms have difficulties in this challenging problem. One reason for this can be attributed to the(More)
In this paper, we tackle the problem of combining features extracted from video for complex event recognition. Feature combination is an especially relevant task in video data, as there are many features we can extract, ranging from image features computed from individual frames to video features that take temporal information into account. To combine(More)
We deal with the problem of recognizing social roles played by people in an event. Social roles are governed by human interactions, and form a fundamental component of human event description. We focus on a weakly supervised setting, where we are provided different videos belonging to an event class, without training role labels. Since social roles are(More)