Bangjun Wang

Learn More
For cancer classification problems based on gene expression, the data usually has only a few dozen sizes but has thousands to tens of thousands of genes which could contain a large number of irrelevant genes. A robust feature selection algorithm is required to remove irrelevant genes and choose the informative ones. Support vector data description (SVDD)(More)
The clustering assumption is to maximize the within-cluster similarity and simultaneously to minimize the between-cluster similarity for a given unlabeled dataset. This paper deals with a new spectral clustering algorithm based on a similarity and dissimilarity criterion by incorporating a dissimilarity criterion into the normalized cut criterion. The(More)