Balwant S Tuana

Learn More
We evaluated the effects of intracerebroventricular (icv) infusion of Na(+)-rich artificial cerebrospinal fluid (aCSF), with or without the mineralocorticoid receptor (MR) blocker spironolactone, on epithelial Na(+) channel (ENaC) subunits and regulators, such as MR, serum/glucocorticoid-inducible kinase 1, neural precursor cells expressed developmentally(More)
Epithelial sodium channels (ENaC) are important for regulating sodium transport across epithelia. Functional studies indicate that neural mechanisms acting through mineralocorticoid receptors (MR) and sodium channels (presumably ENaC) are crucial to the development of sympathoexcitation and hypertension in experimental models of salt-sensitive hypertension.(More)
The expression of the dihydropyridine (DHP) and ryanodine receptors in skeletal muscle was investigated during development of rat myotubes in culture as well as during embryonic and postnatal development in the rat. Through the use of specific gene probes, antibodies and radioligand binding ([3H]PN 200-110 (DHP) and [3H]ryanodine), we identified a(More)
BACKGROUND Tail anchored (TA) membrane proteins target subcellular structures via a C-terminal transmembrane domain and serve prominent roles in membrane fusion and vesicle transport. Sarcolemmal Membrane Associated Protein (SLMAP) possesses two alternatively spliced tail anchors (TA1 or TA2) but their specificity of subcellular targeting remains unknown.(More)
Overexpression of SLMAP gene has been associated with diabetes and endothelial dysfunction of macro- and micro-blood vessels. In this study our primary objective is to explore the role of SLMAP gene polymorphisms in the susceptibility of type 2 diabetes (T2DM) with or without diabetic retinopathy (DR) in the Qatari population. A total of 342 Qatari subjects(More)
Epithelial sodium channels (ENaC) are important for regulating sodium transport across epithelia. Functional studies indicate that neural mechanisms acting through mineralocorticoid receptors (MR) and sodium channels – presumably ENaC – are crucial to the development of sympathoexcitation and hypertension in experimental models of salt sensitive(More)
  • 1