Learn More
The protein kinase C (PKC) activation domain of the parathyroid hormone (PTH) was believed to be the 28-34 region of the molecule. We have now shown that PTH-(29-32) is the smallest PTH fragment that can stimulate significantly membrane-associated PKC activity in ROS 17/2 rat osteosarcoma cells. As was previously shown for full-length PTH-(1-84) and the(More)
Ca2+ and Ca(2+)-binding proteins are involved in running the cell cycle. Ca2+ spikes and signals from integrin-activated focal adhesion complexes and Ca2+ receptors on the cell surface along with cyclic AMP begin the cycle of cyclin-dependent protein kinases (PKs). These transiently expressed PKs stimulate the coordinate expression of DNA-replicating(More)
PTH is regarded conventionally as a catabolic hormone that stimulates osteoclastic resorption of bone. However, it has been known since 1932 that intermittent pulses of PTH stimulate bone formation in animals and humans. PTH independently activates two signal mechanisms: one that stimulates adenylyl cyclase and one that stimulates protein kinase C (PKC).(More)
Dihydropyrimidinase-like protein 3 (DPYSL3), a member of TUC (TOAD-64/Ulip/CRMP), is believed to play a role in neuronal differentiation, axonal outgrowth and, possibly, neuronal regeneration. In primary cortical cultures, glutamate (NMDA) excitotoxicity and oxidative stress (H2O2) caused the cleavage of DPYSL3, resulting in the appearance of a doublet of(More)
The rapid redistribution of cytosolic protein kinase C (PKC) to membranes and its subsequent proteolytic activation to PKM have been implicated in the DMSO/HMBA-induced differentiation of murine erythroleukemia (MEL) cells. However, DMSO was found not to induce detectable changes in PKC distribution in a MEL cell subline (MEL1) which differentiated normally(More)
The PTH activates both adenylate cyclase and a mechanism that increases membrane-associated protein kinase-C (PKC) activity. To define the hormone's PKC activation domain we have used a panel of PTH fragments and ROS 17/2 rat osteosarcoma cells as the target cells. PTH equally and maximally increased PKC activity in ROS 17/2 cell membranes at physiological(More)
Evidence is accumulating that suggests that Ca2+-calmodulin (Ca2+-CaM) and the protein kinase Cs (PKCs) obstruct each other's actions because of the embedding of PKC phosphorylation sites in CaM or Ca2+-CaM-binding domains of a growing number of crucial substrates in neurons (and other cells). These substrates include the CaM storage proteins (neurogranin,(More)
Treating SH-SY5Y human neuroblastoma cells with 1 microM staurosporine resulted in a three- to fourfold higher DNA-dependent protein kinase (DNA-PK) activity compared with untreated cells. Time course studies revealed a biphasic effect of staurosporine on DNA-PK activity: an initial increase that peaked by 4 h and a rapid decline that reached approximately(More)
NMDA receptor antagonists, such as (+)-5-methyl-10, 11-dihydro-5H-dibenzo [a,d] cyclohepten-5,10-imine maleate (MK-801), potently block glutamate-induced neuronal death in myriad in vitro cell models and effectively attenuate ischemic damage in vivo. In this report, a novel role for MK-801 and other NMDA receptor antagonists in preconditioning neurons to(More)
Dihydropyrimidinase-like 3 (DPYSL3), a member of TUC (TOAD-64/Ulip/CRMP), is believed to play a role in neuronal differentiation, axonal outgrowth and possibly in neuronal regeneration. Recently, we have shown that in primary cortical neurons (PCN) NMDA and oxidative stress (H(2)O(2)) caused a calpain-dependent cleavage of DPYSL3 (62 kDa) resulting in the(More)