Balasrinivasa Rao Sajja

Learn More
The presence of large number of false lesion classification on segmented brain MR images is a major problem in the accurate determination of lesion volumes in multiple sclerosis (MS) brains. In order to minimize the false lesion classifications, a strategy that combines parametric and nonparametric techniques is developed and implemented. This approach uses(More)
A technique that involves minimal operator intervention was developed and implemented for identification and quantification of black holes on T1-weighted magnetic resonance images (T1 images) in multiple sclerosis (MS). Black holes were segmented on T1 images based on grayscale morphological operations. False classification of black holes was minimized by(More)
An integrated approach for multi-spectral segmentation of MR images is presented. This method is based on the fuzzy c-means (FCM) and includes bias field correction and contextual constraints over spatial intensity distribution and accounts for the non-spherical cluster's shape in the feature space. The bias field is modeled as a linear combination of(More)
Accurate quantification of the MRSI-observed regional distribution of metabolites involves relatively long processing times. This is particularly true in dealing with large amount of data that is typically acquired in multi-center clinical studies. To significantly shorten the processing time, an artificial neural network (ANN)-based approach was explored(More)
  • 1