Balakrishnan Raja

Learn More
Demand for highly sensitive, robust diagnostics and environmental monitoring methods has led to extensive research in improving reporter technologies. Inorganic phosphorescent materials exhibiting persistent luminescence are commonly found in electroluminescent displays and glowing paints but are not widely used as reporters in diagnostic assays. Persistent(More)
Plasmonic metal nanostructures have shown great potential in sensing, photovoltaics, imaging and biomedicine, principally due to the enhancement of local electric field by light-excited surface plasmons, i.e., collective oscillation of conduction band electrons. Thin films of nanoporous gold have received a great deal of interest due to the unique(More)
We present label-free, in situ monitoring of individual DNA hybridization in microfluidics. By immobilizing molecular sentinel probes on nanoporous gold disks, we demonstrate sensitivity approaching the single-molecule limit via surface-enhanced Raman scattering which provides robust signals without photobleaching for more than an hour. We further(More)
Through their computational power and connectivity, smartphones are poised to rapidly expand telemedicine and transform healthcare by enabling better personal health monitoring and rapid diagnostics. Recently, a variety of platforms have been developed to enable smartphone-based point-of-care testing using imaging-based readout with the smartphone camera as(More)
We present a microfluidic immunoassay platform based on the use of linear microretroreflectors embedded in a transparent polymer layer as an optical sensing surface, and micron-sized magnetic particles as light-blocking labels. Retroreflectors return light directly to its source and are highly detectable using inexpensive optics. The analyte is(More)
Point-of-care detection of pathogens is medically valuable but poses challenging trade-offs between instrument complexity and clinical and analytical sensitivity. Here we introduce a diagnostic platform utilizing lithographically fabricated micron-scale forms of cubic retroreflectors, arguably one of the most optically detectable human artifacts, as(More)
A retroreflective imaging system for imaging microscopic targets over macroscopic sampling areas is introduced. Detection of microorganism-bound retroreflector (RR) targets across millimeter-scale samples is implemented according to retroreflection directionality, collimation, and contrast design characteristics. Retroreflection directionality is considered(More)
In this work, we demonstrate that signal-masking reagents together with appropriate capture antibody carriers can eliminate the washing steps in sandwich immunoassays. A flotation immunoassay (FI) platform was developed with horseradish peroxidase chemiluminescence as the reporter system, the dye Brilliant Blue FCF as the signal-masking reagent, and buoyant(More)
  • 1