Learn More
Treatment of mouse MC3T3-E1 cells with ascorbic acid initiates the formation of a collagenous extracellular matrix and synthesis of several osteoblast-related proteins. We recently showed that ascorbic acid dramatically increases alkaline phosphatase and osteocalcin mRNAs and that this induction is blocked by inhibitors of collagen triple-helix formation(More)
The MC3T3-E1 mouse calvaria-derived cell line has been used to study the role of collagen synthesis in osteoblast differentiation. MC3T3-E1 cells, like several previously characterized osteoblast culture systems, expressed osteoblast markers and formed a mineralized extracellular matrix only after exposure to ascorbic acid. Mineralization was stimulated(More)
Eukaryotic genomes possess an elaborate and dynamic higher-order structure within the limiting confines of the cell nucleus. Knowledge of the physical principles and the molecular machinery that govern the 3D organization of this structure and its regulation are key to understanding the relationship between genome structure and function. Elegant microscopy(More)
Polymer models tied together by constraints of looping and confinement have been used to explain many of the observed organizational characteristics of interphase chromosomes. Here we introduce a simple lattice animal representation of interphase chromosomes that combines the features of looping and confinement constraints into a single framework. We show(More)
We formulate a coarse-grained mean-field approach to study the dynamics of the flexible ring polymer in any given obstacle (gel or melt) environment. The similarity of the static structure of the ring polymer with that of the ideal randomly branched polymer is exploited in formulating the dynamical model using aspects of the pom-pom model for branched(More)
Using a multi-scale computational approach, we determine the effect of introducing a small fraction of high-strength connections between cross-linked nanoparticles. The nanoparticles' rigid cores are decorated with a corona of grafted polymers, which contain reactive functional groups at the chain ends. With the overlap of neighboring coronas, these(More)
The proliferative and plaque-forming cell (PFC) responses of unseparated mononuclear cells (MNC) and B- and T-cell-enriched populations of cells were analyzed in 15 patients with lung cancer to determine the mechanisms involved in the functional abnormality of their B cells. The PFC responses of the MNC of the patient group were significantly lower than(More)
Via a new dynamic, three-dimensional computer model, we simulate the tensile deformation of polymer-grafted nanoparticles that are cross-linked by labile bonds, which can readily rupture and reform. For a range of relatively high strains, the network does not fail, but rather restructures into a stable, ordered structure. Within this network, the(More)
  • 1