Balagurunathan Kuberan

Learn More
Heparan sulfate (HS) polysaccharides interact with numerous proteins at the cell surface and orchestrate many different biological functions. Though many functions of HS are well established, only a few specific structures can be attributed to HS functions. The extreme diversity of HS makes chemical synthesis of specific bioactive HS structures a cumbersome(More)
Heparan sulfate (HS) proteoglycans are crucial to numerous biological processes and pathological conditions, but to date only a few HS structures have been synthesized and characterized with regard to structure-function relationships. Because HS proteoglycans are highly diverse in structure, there are substantial limitations on their synthesis by classical(More)
Heparan sulfate proteoglycans (HSPGs) play vital roles in every step of tumor progression allowing cancer cells to proliferate, escape from immune response, invade neighboring tissues, and metastasize to distal sites away from the primary site. Several cancers including breast, lung, brain, pancreatic, skin, and colorectal cancers show aberrant modulation(More)
Eight oligosaccharides were prepared from dermatan sulfate (DS) and their structures were elucidated. Porcine intestinal mucosal DS was subjected to controlled depolymerization using chondroitin ABC lyase (chondroitinase ABC). The oligosaccharide mixture formed was fractionated by low-pressure gel permeation chromatography (GPC). Size uniform mixtures of(More)
Heparanomics is the study of all the biologically active oligosaccharide domain structures in the entire heparanome and the nature of the interactions among these domains and their protein ligands. Structural elucidation of heparan sulfate and heparin oligosaccharides is a major obstacle in advancing structure-function relationships and heparanomics. There(More)
Glycosaminoglycan (GAG) biosynthesis requires numerous biosynthetic enzymes and activated sulfate and sugar donors. Although the sequence of biosynthetic events is resolved using reconstituted systems, little is known about the emergence of cell-specific GAG chains (heparan sulfate, chondroitin sulfate, and dermatan sulfate) with distinct sulfation(More)
Heparan sulfate (HS) is a sulfated polysaccharide present on cell surfaces and in the extracellular matrix. Accumulating evidence shows that HS plays key roles in many biological systems by interacting with various proteins in a structural-specific manner. Due to technical difficulties, however, the understanding of critical functional groups on HS for(More)
We report the preparation of size-defined [(15)N]N-acetylheparosan oligosaccharides from Escherichia coli-derived (15)N-enriched N-acetylheparosan. Optimized growth conditions of E. coli in minimal media containing (15)NH(4)Cl yielded [(15)N]N-acetylheparosan on a preparative scale. Depolymerization of [(15)N]N-acetylheparosan by heparitinase I yielded(More)
Fibroblast growth factor (FGF) signaling begins with the formation of a ternary complex of FGF, FGF receptor (FGFR), and heparan sulfate (HS). Multiple models have been proposed for the ternary complex. However, major discrepancies exist among those models, and none of these models have evaluated the functional importance of the interacting regions on the(More)
Heparin is a highly sulfated polysaccharide that serves biologically relevant roles as an anticoagulant and anticancer agent. While it is well-known that modification of heparin's sulfation pattern can drastically influence its ability to bind growth factors and other extracellular molecules, very little is known about the cellular uptake of heparin and the(More)