Balachandran Manavalan

Learn More
Toll-like receptors (TLRs) play a central role in the innate immune response by recognizing conserved structural patterns in a variety of microbes. TLRs are classified into six families, of which TLR7 family members include TLR7, 8, and 9, which are localized to endolysosomal compartments recognizing viral infection in the form of foreign nucleic acids. In(More)
Toll-like receptors (TLRs) are pattern recognition receptors that recognize pathogens based on distinct molecular signatures. The human (h)TLR1, 2, 6 and 10 belong to the hTLR1 subfamilies, which are localized in the extracellular regions and activated in response to diverse ligand molecules. Due to the unavailability of the hTLR10 crystal structure, the(More)
Toll-like receptors (TLRs) are pattern recognition receptors that recognize conserved structures in pathogens, trigger innate immune responses, and prime antigen-specific adaptive immunity. Elucidation of crystal structures of TLRs interacting with their ligands such as TLR1-2 with triacylated lipopeptide, TLR2-6 with diacylated lipopeptide, TLR4-MD-2 with(More)
Toll-like receptors (TLRs) activate a potent immunostimulatory response. There is clear evidence that overactivation of TLRs leads to infectious and inflammatory diseases. Recent biochemical studies have shown that the membrane-bound form of ST2 (ST2L), a member of the Toll-like/IL-1 receptor superfamily, negatively regulates MyD88-dependent TLR signaling(More)
Cytoplasmic IκB proteins are primary regulators that interact with NF-κB subunits in the cytoplasm of unstimulated cells. Upon stimulation, these IκB proteins are rapidly degraded, thus allowing NF-κB to translocate into the nucleus and activate the transcription of genes encoding various immune mediators. Subsequent to translocation, nuclear IκB proteins(More)
Recently, predicting proteins three-dimensional (3D) structure from its sequence information has made a significant progress due to the advances in computational techniques and the growth of experimental structures. However, selecting good models from a structural model pool is an important and challenging task in protein structure prediction. In this(More)
BACKGROUND Nonribosomal peptide synthetases (NRPSs) are multienzymatic, multidomain megasynthases involved in the biosynthesis of pharmaceutically important nonribosomal peptides. The peptaibol synthetase from Trichoderma virens (TPS) is an important member of the NRPS family that exhibits antifungal properties. The majority of the NRPSs terminate peptide(More)
A primary level of control for nuclear factor kappa B (NF-κB) is effected through its interactions with the inhibitor protein, inhibitor of kappa B (IκB). Several lines of evidence confirm the existence of multiple forms of IκB that appear to regulate NF-κB by distinct mechanisms. Therefore, we performed a comprehensive bioinformatics analysis to understand(More)
  • 1