Learn More
This paper describes the kinetics and stoichiometry of a tightly coupled Na-Li exchange transport system in human red cells. The system is inhibited by phloretin and furosemide but not by ouabain. Li influx by this system increases and saturates with increasing concentrations of external Li and internal Na and is inhibited competitively by external Na.(More)
Human peripheral blood lymphocytes (PBL), when placed into hypotonic media, first swell and then shrink back to their original volumes because of a rapid KCl leakage via volume-activated K+ and anion permeation pathways. By using gramicidin, a cation channel-forming ionophore, cation transport through the cell membrane can be shunted so that the salt fluxes(More)
Pluripotent stem cells represent a new source of biological material allowing the exploration of signaling phenomena during normal cell development and differentiation. Still, the calcium signaling pathways and intracellular calcium responses to various ligands or stress conditions have not been sufficiently explored as yet in embryonic or induced(More)
Hypotonic dilution of human peripheral blood lymphocytes (PBL) induces large conductive permeabilities for K+ and Cl-, associated with the capacity of the cells to regulate their volumes. When rapid cation leakage is assured by the addition of the ionophore gramicidin, the behavior of the anion conductance pathway can be independently examined. Using this(More)
In human red cells, Li is extruded against its own concentration gradient if the external medium contains Na as a dominant cation. This uphill net Li extrusion occurs in the presence of external Na but not K, Rb, Cs, choline, Mg, or Ca, is ouabain-insensitive, inhibited by phloretin, and does not require the presence of cellular ATP. Li influx into human(More)
The discovery of direct cell reprogramming and induced pluripotent stem (iPS) cell technology opened up new avenues for the application of non-viral, transposon-based gene delivery systems. The Sleeping Beauty (SB) transposon is highly advanced for versatile genetic manipulations in mammalian cells. We established iPS cell reprogramming of mouse embryonic(More)
Description: The Handbook of Nanotoxicology, Nanomedicine and Stem Cell Use in Toxicology provides an insight into the current trends and future directions of research in these rapidly developing scientific fields. Written by leading scientists and experts, the Handbook will be of interest to various scientific disciplines including toxicology, medicine,(More)
Human ABCG2 is a plasma membrane glycoprotein working as a homodimer or homo-oligomer. The protein plays an important role in the protection/detoxification of various tissues and may also be responsible for the multidrug-resistant phenotype of cancer cells. In our previous study we found that the 5D3 monoclonal antibody shows a function-dependent reactivity(More)
Human induced pluripotent stem cells (hiPSCs) are capable of unlimited proliferation and can differentiate in vitro to generate derivatives of the three primary germ layers. Genetic and epigenetic abnormalities have been reported by Wissing and colleagues to occur during hiPSC derivation, including mobilization of engineered LINE-1 (L1) retrotransposons.(More)
We have developed a rapid, simple and reliable, antibody-based flow cytometry assay for the quantitative determination of membrane proteins in human erythrocytes. Our method reveals significant differences between the expression levels of the wild-type ABCG2 protein and the heterozygous Q141K polymorphic variant. Moreover, we find that nonsense mutations on(More)