Learn More
Brain electrical activity is largely composed of oscillations at characteristic frequencies. These rhythms are hierarchically organized and are thought to perform important pathological and physiological functions. The slow wave is a fundamental cortical rhythm that emerges in deep non-rapid eye movement sleep. In animals, the slow wave modulates delta,(More)
Brain implants provide exceptional tools to understand and restore cerebral functions. The utility of these devices depends crucially on their biocompatibility and long term viability. We addressed these points by implanting non-functional, NeuroProbes silicon probes, without or with hyaluronic acid (Hya), dextran (Dex), dexamethasone (DexM), Hya+DexM(More)
A large proportion of hippocampal afferents and efferents are relayed through the subiculum. It is also thought to be a key structure in the generation and maintenance of epileptic activity; rhythmic interictal-like discharges were recorded in previous studies of subicular slices excised from temporal lobe epilepsy patients. In order to investigate if and(More)
This paper presents multi-electrode arrays for in vivo neural recording applications incorporating the principle of electronic depth control (EDC), i.e., the electronic selection of recording sites along slender probe shafts independently for multiple channels. Two-dimensional (2D) arrays were realized using a commercial 0.5- μm(More)
This paper presents the NeuroSelect software for managing the electronic depth control of cerebral CMOS-based microprobes for extracellular in vivo recordings. These microprobes contain up to 500 electronically switchable electrodes which can be appropriately selected with regard to specific neuron locations in the course of a recording experiment.(More)
In this article, we evaluated the electrophysiological performance of a novel, high-complexity silicon probe array. This brain-implantable probe implements a dynamically reconfigurable voltage-recording device, coordinating large numbers of electronically switchable recording sites, referred to as electronic depth control (EDC). Our results show the(More)
A novel silicon-based microelectrode array with one-and two-dimensional variants was developed in the framework of the EU-funded research project NeuroProbes. The electrode array comprises complementary-metal-oxide-semiconductor based integrated circuitry to implement the concept of electronic depth control which is used to select up to 32 recording sites(More)
  • 1