Balázs Dóra

  • Citations Per Year
Learn More
We show by angle-resolved photoemission spectroscopy that a tunable gap in quasi-free-standing monolayer graphene on Au can be induced by hydrogenation. The size of the gap can be controlled via hydrogen loading and reaches approximately 1.0 eV for a hydrogen coverage of 8%. The local rehybridization from sp(2) to sp(3) in the chemical bonding is observed(More)
A comprehensive theory of electron spin resonance (ESR) for a Luttinger liquid state of correlated metals is presented. The ESR measurables such as the signal intensity and the linewidth are calculated in the framework of Luttinger liquid theory with broken spin rotational symmetry as a function of magnetic field and temperature. We obtain a significant(More)
Time-periodic perturbations can be used to engineer topological properties of matter by altering the Floquet band structure. This is demonstrated for the helical edge state of a spin Hall insulator in the presence of monochromatic circularly polarized light. The inherent spin structure of the edge state is influenced by the Zeeman coupling and not by the(More)
Recent NMR experiments by Singer et al. [Singer, Phys. Rev. Lett. 95, 236403 (2005).] showed a deviation from Fermi-liquid behavior in carbon nanotubes with an energy gap evident at low temperatures. Here, a comprehensive theory for the magnetic field and temperature dependent NMR 13C spin-lattice relaxation is given in the framework of the(More)
Spintronics is an emerging paradigm with the aim to replace conventional electronics by using electron spins as information carriers. Its utility relies on the magnitude of the spin-relaxation, which is dominated by spin-orbit coupling (SOC). Yet, SOC induced spin-relaxation in metals and semiconductors is discussed for the seemingly orthogonal cases when(More)
A theory of nuclear magnetic resonance (NMR) in graphene is presented. The canonical form of the electron-nucleus hyperfine interaction is strongly modified by the linear electronic dispersion. The NMR shift and spin-lattice relaxation time are calculated as a function of temperature, chemical potential, and magnetic field, and three distinct regimes are(More)
We investigate the many-body generalization of the orthogonality catastrophe by studying the generalized Loschmidt echo of Luttinger liquids (LLs) after a global change of interaction. It decays exponentially with system size and exhibits universal behavior: the steady state exponent after quenching back and forth n times between 2 LLs (bang-bang protocol)(More)
The temperature dependence of the electron-spin lifetime T1 and the g factor are anomalous in alkali fullerides (K,Rb)3C60, which cannot be explained by the canonical Elliott-Yafet theory. These materials are archetypes of strongly correlated and narrow band metals. We introduce the concept of a "complex electron-spin resonance frequency shift" to treat(More)
The temperature dependence of the electron-spin relaxation time in MgB2 is anomalous as it does not follow the resistivity above 150 K; it has a maximum around 400 K and decreases for higher temperatures. This violates the well established Elliot-Yafet theory of spin relaxation in metals. The anomaly occurs when the quasiparticle scattering rate (in energy(More)
D. Haberer,1 L. Petaccia,2 M. Farjam,3 S. Taioli,4,5 S. A. Jafari,3,6 A. Nefedov,7 W. Zhang,7,8 L. Calliari,4 G. Scarduelli,4 B. Dora,9 D. V. Vyalikh,10 T. Pichler,11 Ch. Wöll,7 D. Alfè,12,13,14 S. Simonucci,15 M. S. Dresselhaus,16 M. Knupfer,1 B. Büchner,1 and A. Grüneis1,11 1IFW Dresden, P.O. Box 270116, D-01171 Dresden, Germany 2Elettra Synchrotron Light(More)