Bakhtiyor F. Rasulev

Learn More
A QSAR toxicity analysis has been performed for a series of 19 alkaloids with the lycoctonine skeleton. GA-MLRA (Genetic Algorithm combined with Multiple Linear Regression Analysis) technique was applied for the generation of two types of QSARs: first, models containing exclusively 3D-descriptors and second, models consisting of physicochemical descriptors.(More)
Fullerene and its derivatives have potential antiviral activity due to their specific binding interactions with biological molecules. In this study fullerene derivatives were investigated by the synergic combination of three approaches: quantum-mechanical calculations, protein-ligand docking and quantitative structure-activity relationship methods. The(More)
Early pharmacological studies of Aconitum and Delphinium sp. alkaloids suggested that these neurotoxins act at site 2 of voltage-gated Na(+) channel and allosterically modulate its function. Understanding structural requirements for these compounds to exhibit binding activity at voltage-gated Na(+) channel has been important in various fields. This paper(More)
Fullerenes are sparingly soluble in many solvents. The dependence of fullerene's solubility on molecular structure of the solvent must be understood in order to manage efficiently this class of compounds. To find such dependency ab initio quantum-chemical calculations in combination with quantitative struc-ture–property relationship (QSPR) tool were used to(More)
The rate constants (K(OH)) of reactions between 78 organic aromatic pollutants and hydroxyl radical were examined. Simplified molecular input line entry system was used as representation of the molecular structure of the pollutants. Quantitative structure-property relationships was developed using CORAL software ( for four(More)
The knowledge of physico-chemical properties of carbon nanotubes, including behavior in organic solvents is very important for design, manufacturing and utilizing of their counterparts with improved properties. In the present study a quantitative structure-activity/property relationship (QSAR/QSPR) approach was applied to predict the dispersibility of(More)
In this contribution, the advantages and limitations of two computational techniques that can be used for the investigation of nanoparticles activity and toxicity: classic nano-QSAR (Quantitative Struc-ture–Activity Relationships employed for nanomate-rials) and 3D nano-QSAR (three-dimensional Quantitative Structure–Activity Relationships, such us(More)
Using novel advances in computational chemistry, we demonstrate that the set of 20 genetically encoded amino acids, used nearly universally to construct all coded terrestrial proteins, has been highly influenced by natural selection. We defined an adaptive set of amino acids as one whose members thoroughly cover relevant physico-chemical properties, or(More)
  • 1