Learn More
It is expected that the number and variety of engineered nanoparticles will increase rapidly over the next few years, and there is a need for new methods to quickly test the potential toxicity of these materials. Because experimental evaluation of the safety of chemicals is expensive and time-consuming, computational methods have been found to be efficient(More)
The production of nanomaterials increases every year exponentially and therefore the probability these novel materials that they could cause adverse outcomes for human health and the environment also expands rapidly. We proposed two types of mechanisms of toxic action that are collectively applied in a nano-QSAR model, which provides governance over the(More)
Many metal oxide nanoparticles are able to cause persistent stress to live organisms, including humans, when discharged to the environment. To understand the mechanism of metal oxide nanoparticles' toxicity and reduce the number of experiments, the development of predictive toxicity models is important. In this study, performed on a series of nanoparticles,(More)
Creating suitable chemical categories and developing read-across methods, supported by quantum mechanical calculations, can be an effective solution to solving key problems related to current scarcity of data on the toxicity of various nanoparticles. This study has demonstrated that by applying a nano-read-across, the cytotoxicity of nano-sized metal oxides(More)
Using novel advances in computational chemistry, we demonstrate that the set of 20 genetically encoded amino acids, used nearly universally to construct all coded terrestrial proteins, has been highly influenced by natural selection. We defined an adaptive set of amino acids as one whose members thoroughly cover relevant physico-chemical properties, or(More)
Optimal descriptors based on the simplified molecular input line entry system (SMILES) have been utilized in modeling of acute toxicity towards rats. Toxicity of 61 benzene derivatives has been modeled by means of balance of correlations for sets of the training (n=27) and calibration (n=24). The obtained models were evaluated with the external test set(More)
Nanotechnology that develops novel materials at size of 100nm or less has become one of the most promising areas of human endeavor. Because of their intrinsic properties, nanoparticles are commonly employed in electronics, photovoltaic, catalysis, environmental and space engineering, cosmetic industry and - finally - in medicine and pharmacy. In that sense,(More)
Fullerenes are sparingly soluble in many solvents. The dependence of fullerene's solubility on molecular structure of the solvent must be understood in order to manage efficiently this class of compounds. To find such dependency ab initio quantum-chemical calculations in combination with quantitative struc-ture–property relationship (QSPR) tool were used to(More)
Nanotechnology has rapidly entered into human society, revolutionized many areas, including technology, medicine and cosmetics. This progress is due to the many valuable and unique properties that nanomaterials possess. In turn, these properties might become an issue of concern when considering potentially uncontrolled release to the environment. The rapid(More)
Classification data related to the Liver-Related Adverse Effects of Drugs have been studied with the CORAL software (http://www.insilico.eu/coral). Two datasets which contain compounds with two serum enzyme markers of liver toxicity: alanine aminotransferase (ALT, n=187) and aspartate aminotransferase (AST, n=209) are analyzed. Statistical quality of the(More)