Learn More
A large proportion of human tumor-derived cell lines and primary tumor cells show methionine-dependent growth. This phenomenon refers to the ability of cells to grow in media containing methionine and the inability of cells to grow in media supplemented with methionine's precursor, homocysteine (Hcy). Methionine can be formed by two different pathways, the(More)
PURPOSE Loss of the methylthioadenosine phosphorylase (MTAP) gene at 9p21 is observed frequently in a variety of human cancers. We have shown previously that MTAP can act as a tumor suppressor gene and that its tumor suppressor function is related to its effect on polyamine homeostasis. Ornithine decarboxylase is a key enzyme in the regulation of polyamine(More)
The antiproliferative effects of gossypol on human MCF-7 mammary cancer cells and cyclin D1-transfected HT-1060 human fibrosarcoma cells were investigated by cell cycle analysis and effects on the cell cycle regulatory proteins Rb and cyclin D1. Flow cytometry of MCF-7 cells at 24 h indicated that 10 microM gossypol inhibited DNA synthesis by producing a(More)
OBJECTIVE The gene encoding the methionine salvage pathway methylthioadenosine phosphorylase (MTAP) is a tumor suppressor gene that is frequently inactivated in a wide variety of human cancers. In this study, we have examined if heterozygosity for a null mutation in Mtap (Mtap(lacZ)) could accelerate tumorigenesis development in two different mouse cancer(More)
Methylthioadenosine Phosphorylase (MTAP) is a tumor suppressor gene that is frequently deleted in human cancers and encodes an enzyme responsible for the catabolism of the polyamine byproduct 5'deoxy-5'-methylthioadenosine (MTA). To elucidate the mechanism by which MTAP inhibits tumor formation, we have reintroduced MTAP into MTAP-deleted HT1080(More)
A large proportion of human tumor-derived cell lines and primary tumor cells show methionine-dependent growth. This phenomenon refers to the ability of cells to grow in media containing methionine and the inability of cells to grow in media supplemented with methionine's precursor , homocysteine (Hcy). Methionine can be formed by two different pathways, the(More)
  • 1