Learn More
We have produced a draft sequence of the rice genome for the most widely cultivated subspecies in China, Oryza sativa L. ssp. indica, by whole-genome shotgun sequencing. The genome was 466 megabases in size, with an estimated 46,022 to 55,615 genes. Functional coverage in the assembled sequences was 92.0%. About 42.2% of the genome was in exact(More)
We report improved whole-genome shotgun sequences for the genomes of indica and japonica rice, both with multimegabase contiguity, or almost 1,000-fold improvement over the drafts of 2002. Tested against a nonredundant collection of 19,079 full-length cDNAs, 97.7% of the genes are aligned, without fragmentation, to the mapped super-scaffolds of one or the(More)
* Large-scale duplication events have been recently uncovered in the rice genome, but different interpretations were proposed regarding the extent of the duplications. * Through analysing the 370 Mb genome sequences assembled into 12 chromosomes of Oryza sativa subspecies indica, we detected 10 duplicated blocks on all 12 chromosomes that contained 47% of(More)
The CVTree web server (http://tlife.fudan.edu.cn/cvtree) presented here is a new implementation of the whole genome-based, alignment-free composition vector (CV) method for phylogenetic analysis. It is more efficient and user-friendly than the previously published version in the 2004 web server issue of Nucleic Acids Research. The development of whole(More)
This is a review of a new and essentially simple method of inferring phylogenetic relationships from complete genome data without using sequence alignment. The method is based on counting the appearance frequency of oligopeptides of a fixed length (up to K = 6) in the collection of protein sequences of a species. It is a method without fine adjustment and(More)
Composition Vector Tree (CVTree) implements a systematic method of inferring evolutionary relatedness of microbial organisms from the oligopeptide content of their complete proteomes (http://cvtree.cbi.pku.edu.cn). Since the first bacterial genomes were sequenced in 1995 there have been several attempts to infer prokaryote phylogeny from complete genomes.(More)
Molecular phylogenetics and phylogenomics have greatly revised and enriched the fungal systematics in the last two decades. Most of the analyses have been performed by comparing single or multiple orthologous gene regions. Sequence alignment has always been an essential element in tree construction. These alignment-based methods (to be called the standard(More)
We perform an exhaustive, taxon by taxon, comparison of the branchings in the composition vector trees (CVTrees) inferred from 432 prokaryotic genomes available on 31 December 2006, with the bacteriologists’ taxonomy—primarily the latest online Outline of the Bergey’s Manual of Systematic Bacteriology. The CVTree phylogeny agrees very well with the Bergey’s(More)
A faithful phylogeny and an objective taxonomy for prokaryotes should agree with each other and ultimately follow the genome data. With the number of sequenced genomes reaching tens of thousands, both tree inference and detailed comparison with taxonomy are great challenges. We now provide one solution in the latest Release 3.0 of the alignment-free and(More)
Composition vector approach to prokaryotic phylogeny provides an alignment-free and parameter-free method based on whole-genome data. It has also been applied to viruses and fungi. In all studied cases the inferred phylogenetic relationships agree well with taxonomic knowledge in major groupings and fine branchings. In this review article, after(More)