Learn More
Following an acute stressor, pre-adolescent rats exhibit a protracted hormonal response compared to adults, while after repeated exposure to the same stressor (i.e., homotypic stress) prepubertal males fail to habituate like adults. Though the neurobehavioral implications of these changes are unknown, studying pubertal shifts in stress reactivity may help(More)
Following a variety of stressors, prepubertal animals display significantly longer hormonal stress responses than adults. Although the mechanisms that mediate this pubertal-related difference in stress reactivity are unclear, previous studies have shown that social interactions are differentially affected by stress in animals before and after puberty. Given(More)
Studies have indicated significant pubertal-related differences in hormonal stress reactivity. We report here that prepubertal (30 days) male rats display a more protracted stress-induced corticosterone response than adults (70 days), despite showing relatively similar levels of adrenocorticotropic hormone (ACTH). Additionally, we show that adrenal(More)
Stress-especially chronic, uncontrollable stress-is an important risk factor for many neuropsychiatric disorders. The underlying mechanisms are complex and multifactorial, but they involve correlated changes in structural and functional measures of neuronal connectivity within cortical microcircuits and across neuroanatomically distributed brain networks.(More)
Repeated presentations of a previously conditioned stimulus lead to a new form of learning known as extinction, which temporarily alters the response to the original stimulus. Previous studies have shown that the consolidation of extinction memory requires de novo protein synthesis. However, the role of specific nodes of translational control in extinction(More)
Drug addiction requires associative learning processes that critically involve hippocampal circuits, including the opioid system. We recently found that acute and chronic stress, important regulators of addictive processes, affect hippocampal opioid levels and mu opioid receptor trafficking in a sexually dimorphic manner. Here, we examined whether acute and(More)
  • 1