Learn More
Hippocampal neurons exhibit a slow afterhyperpolarization following membrane depolarization; this is thought to reflect an underlying Ca2+-dependent K+ current. This current is potentiated by intermediate concentrations (0.1-1.0 mM) of exogenous Ca2+ buffer [Schwindt P. C. et al. (1992) Neuroscience 47, 571-578; Zhang L. et al. (1995) J. Neurophysiol. 74,(More)
BACKGROUND Our understanding of the pathogenesis of arteriovenous malformations (AVMs) and arteriovenous fistulas (AVFs) has been limited by the lack of adequate animal models. In this study we evaluate the time course of angiographic, hemodynamic and histopathological changes in an arteriovenous fistula in rats as a potential model. METHODS An(More)
OBJECT Interest has developed in the use of magnesium (Mg++) as a neuroprotectant and antivasospastic agent. Magnesium may increase cerebral blood flow (CBF) and reduce the contraction of cerebral arteries caused by various stimuli. In this study the authors tested the hypothesis that a continuous intravenous infusion of Mg++ reduces cerebral vasospasm(More)
Objective. The purpose of our study was to understand the association between serum triglycerides and outcomes in acute ischemic stroke (AIS) patients. Methods. A cohort of all adult patients presenting to the Emergency Department (ED) with an AIS from March 2004 to December 2005 were selected. The lipid profile levels were measured within 24 hours of(More)
Electrophysiological and molecular characteristics of voltage-dependent calcium (Ca(2+)) channels were studied using whole-cell patch clamp, polymerase chain reaction and Western blotting in smooth muscle cells freshly isolated from dog basilar artery. Inward currents evoked by depolarizing steps from a holding potential of -50 or -90 mV in 10 mm barium(More)
OBJECT This study was conducted for two purposes. The first was to determine whether a combination of measurements of subarachnoid clot volume, clearance rate, and density could improve prediction of which patients experience vasospasm. The second was to determine if each of these three measures could be used independently to predict vasospasm. METHODS(More)
Glial cells isolated from the nervous system are sensitive to neurotransmitters and may therefore be involved in synaptic transmission. The sensitivity of individual perisynaptic Schwann cells to activity of a single synapse was investigated, in situ, at the frog neuromuscular junction by monitoring changes in intracellular Ca2+ in the Schwann cells. Motor(More)
Spontaneous ICH is a devastating condition and is associated with significant mortality in the acute phase due to ongoing hemorrhage and hematoma expansion. A growing body of evidence suggests that there may be considerable utility in performing noninvasive vascular imaging during the acute-to-early phase of ICH. CTA has become widely available and is(More)
OBJECTIVE Giant (>or=25 mm) intracranial aneurysms (IA) have an extremely poor natural history and continue to confound modern techniques for management. Currently, there is a dearth of large series examining endovascular treatment of giant IAs only. METHODS We reviewed long-term clinical and radiological outcome from a series of 39 consecutive giant IAs(More)
1. Acetylcholine causes a rise of intracellular Ca2+ in perisynaptic Schwann cells (PSCs) of the frog neuromuscular junction. The signalling pathway was characterized using the fluorescent Ca2+ indicator fluo-3 and fluorescence microscopy. 2. Nicotinic antagonists had no effect on Ca2+ responses evoked by ACh and no Ca2+ responses were evoked with the(More)