Learn More
Using the human Intestine 407 cell line as a model, we investigated a possible role for tyrosine kinase(s) in regulating the ion efflux pathways induced by hyposmotic stimulation (regulatory volume decrease, RVD). Pretreatment of 125I(-)-and 86Rb(+)-loaded cells with the phosphotyrosine phosphatase inhibitor sodium orthovanadate (200 microM) potentiated(More)
Histamine receptors are present on the surface of various normal and tumor-derived cell types, where their biological function is incompletely understood. Here we report that histamine not only stimulates cell proliferation under serum-free conditions, but also is chemotactic for human carcinoma (Hela and A431) and melanoma (A875) cells expressing H1 type(More)
Hypo-osmotic swelling of human Intestine 407 cells leads to a significant increase of intracellular MAPKAP-kinase 2 activity and Hsp27 phosphorylation. Pre-treatment of the cells with the p38 MAP kinase inhibitor SB-203580 blocks this activation, indicating that the hypotonicity-induced activation of MAPKAP kinase 2 is, similarly to that described for(More)
A recently cloned isoform of cGMP-dependent protein kinase (cGK), designated type II, was implicated as the mediator of cGMP-provoked intestinal Cl- secretion based on its localization in the apical membrane of enterocytes and on its capacity to activate cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channels. In contrast, the soluble type I(More)
An inwardly rectifying anion channel in malaria-infected red blood cells has been proposed to function as the "new permeation pathway" for parasite nutrient acquisition. As the channel shares several properties with the cystic fibrosis transmembrane conductance regulator (CFTR), we tested their interrelationship by whole-cell current measurements in(More)
In order to investigate the involvement of cGMP-dependent protein kinase (cGK) type II in cGMP-provoked intestinal Cl- secretion, cGMP-dependent activation and phosphorylation of cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channels was analyzed after expression of cGK II or cGK Ibeta in intact cells. An intestinal cell line which stably(More)
Chloride (Cl)-conducting channel proteins in plasma and intracellular membranes subserve a diversity of cellular functions, including neurotransmission, osmoregulation, pH regulation in organelles, acid secretion by parietal cells in the stomach, and salt absorption or secretion in exocrine glands (pancreas, sweat gland) and transport epithelia (trachea,(More)
The cytokine tumor necrosis factor (TNF) alpha was found to stimulate the p38 mitogen activated protein (MAP) kinase signalling cascade in human umbilical vein endothelial cells. TNFalpha increased the activity of the p38 substrate MAP kinase-activated-protein (MAPKAP) kinase 2 and the subsequent phosphorylation of the small heat shock protein Hsp27 about(More)
AIM The role of high cholesterol-containing microdomains in the signal transduction cascade leading to the activation of volume-regulated anion channels (VRACs) was studied. METHODS Osmotic cell swelling-induced efflux of 125I- was determined in human epithelial Intestine 407 cells and in skin fibroblasts obtained from healthy controls or Niemann-Pick(More)
Metcalfe’s Law states that the value of a communications network is proportional to the square of the size of the network. It is widely accepted and frequently cited. However, there are several arguments that this rule is a significant overestimate. (Therefore Reed’s Law is even more of an overestimate, since it says that the value of a network grows(More)