Learn More
Breathing a mixture of 10% CO(2) with 90% O(2) (referred to here as carbogen-10) increases blood flow due to the vasodilatory effect of CO(2), and raises blood O(2) saturation due to the enriched oxygen level. These effects both tend to reduce the level of deoxygenated hemoglobin in brain tissues, thereby reducing the potential for further increases in BOLD(More)
Although the Notch signaling pathway is one of the most intensely studied intracellular signaling pathways, the mechanisms by which Notch signaling regulates transcription remain incompletely understood. Here, we report that B cell leukemia/lymphoma 6 (BCL6), a transcriptional repressor, is a Notch-associated factor. BCL6 is necessary to maintain the(More)
Type I collagen is the most abundant protein in the human body. Its excessive synthesis results in fibrosis of various organs. Fibrosis is a major medical problem without an existing cure. Excessive synthesis of type I collagen in fibrosis is primarily due to stabilization of collagen mRNAs. We recently reported that intermediate filaments composed of(More)
Tacrolimus (FK506) is a widely used immunosuppressive drug. Its effects on hepatic fibrosis have been controversial and attributed to immunosuppression. We show that in vitro FK506, inhibited synthesis of type I collagen polypeptides, without affecting expression of collagen mRNAs. In vivo, administration of FK506 at a dose of 4 mg/kg completely prevented(More)
Type I collagen is extracellular matrix protein composed of two α1(I) and one α2(I) polypeptides that fold into triple helix. Collagen polypeptides are translated in coordination to synchronize the rate of triple helix folding to the rate of posttranslational modifications of individual polypeptides. This is especially important in conditions of high(More)
Regulatory Factor X (RFX) transcription factors are important for development and are likely involved in the pathogenesis of serious human diseases including ciliopathies. While seven RFX genes have been identified in vertebrates and several RFX transcription factors have been reported to be regulators of ciliogenesis, the role of RFX7 in development(More)
Fibroproliferative diseases are one of the leading causes of death worldwide. They are characterized by reactive fibrosis caused by uncontrolled synthesis of type I collagen. There is no cure for fibrosis and development of therapeutics that can inhibit collagen synthesis is urgently needed. Collagen α1(I) mRNA and α2(I) mRNA encode for type I collagen and(More)
Type I collagen is the most abundant structural protein in all vertebrates, but its constitutive rate of synthesis is low due to long half-life of the protein (60-70 days). However, several hundred fold increased production of type I collagen is often seen in reparative or reactive fibrosis. The mechanism which is responsible for this dramatic upregulation(More)
Overproduction of type I collagen is associated with a wide range of fibrotic diseases as well as surgical failure such as in glaucoma filtration surgery (GFS). Its modulation is therefore of clinical importance. Valproic acid (VPA) is known to reduce collagen in a variety of tissues with unclear mechanism of action. In this report, we demonstrate that VPA(More)
The neuropeptide oxytocin has been shown to influence on neuroendocrine function. The aim of the present study was to investigate the effect of peripheral oxytocin treatment on the synthesis, uptake and content of adreno-medullary catecholamine. For this purpose oxytocin (3.6μg/100g body weight, s.c) was administrated to male rats once a day over 14 days.(More)