Learn More
1. Properties of the Ca-activated K channel were studied in excised patches of surface membrane from cultured rat muscle cells using single channel recording techniques.2. Increasing the concentration of calcium at the intracellular membrane surface [Ca](i), increased both the frequency and effective duration of channel openings. Ca at the extracellular(More)
The stochastic properties of single Ca-activated K channels in excised patches of surface membrane from cultured rat muscle cells were studied using the patch-clamp technique. The distribution of all open intervals was described by the sum of two exponential distributions of short and long mean open time, suggesting at least two major open-channel states.(More)
Burst kinetics of single Ca-activated K channels in excised patches of surface membrane from cultured rat muscle were studied using the patch-clamp technique. Channel activity was separated into bursts using a calculated gap derived from the distribution of shut intervals. Shut intervals greater than the calculated gap were taken as gaps between bursts. The(More)
1. The patch-clamp technique was used to record single-channel currents from cell-attached patches on rat brain cortical neurons in culture. The composition of the open and shut intervals during bursts of openings was studied in N-methyl-D-aspartate (NMDA) receptors exposed to 1 microM NMDA and 10 microM glycine at a membrane potential of -70 mV. 2. Open(More)
Single channel recording techniques were applied to the study of activation and inactivation of Ca2+-activated K+ channels in excised patches of membrane from rat muscle grown in culture. The concentration of intracellular surface Ca2+ was 0.6 microM in all experiments. The time course of the averaged open probability during depolarizing voltage steps of 1(More)
Calcium-activated potassium channels from cultured rat skeletal muscle were treated with the protein-modifying reagent N-bromoacetamide (NBA) (0.3-1 mM) and studied in excised patches using patch-clamp techniques. After NBA treatment, channels opened only occasionally, and, in contrast to untreated channels, the open probability was no longer sensitive to(More)
Biochemical and electrophysiological studies suggest that adenosine 3',5'-monophosphate (cAMP)-dependent phosphorylation of the nicotinic acetylcholine receptor channel is functionally significant because it modifies the receptor's rate of desensitization to acetylcholine. In studies that support this conclusion researchers have used forskolin to stimulate(More)
Single channel currents from Ca-activated K channels were recorded from cell-attached patches, which were then excised from 1321N1 human astrocytoma cells. Cells were depolarized with K (110 mM) so that the membrane potential was known in both patch configurations, and the Ca ionophore A23187 or ionomycin (20-100 microM) was used to equilibrate(More)