Learn More
Guided tissue regeneration is gaining importance in the field of orthopaedic tissue engineering as need and technology permits the development of site-specific engineering approaches. Computer Aided Design (CAD) and Finite Element Analysis (FEA) hybridized with manufacturing techniques such as Solid Freeform Fabrication (SFF), is hypothesized to allow for(More)
BACKGROUND Transfacet pedicle screws are scarcely used in primary posterior fixation, and have limited use unilaterally or with existing anterior instrumentation. Nevertheless, the incomplete literature suggests equivalent or better performance of ipsilateral, bilateral, facet screws compared to bilateral pedicle screws. METHODS Two groups of seven human(More)
Conventional posterior dynamic stabilization devices demonstrated a tendency towards highly rigid stabilization approximating that of titanium rods in flexion. In extension, they excessively offload the index segment, making the device as the sole load-bearing structure, with concerns of device failure. The goal of this study was to compare the kinematics(More)
STUDY DESIGN Human cadaveric ilio-lumbosacral spines were tested in an in vitro biomechanical flexibility experiment to investigate the biomechanical stability provided by four different types of spinal reconstruction techniques after spondylectomy of the L5 vertebral body. OBJECTIVE To compare the biomechanical stability provided by four reconstruction(More)
STUDY DESIGN A biomechanical study comparing the fatigue strength of different types of C2 fixation in a C1-C2 construct. OBJECTIVE To determine the pullout strength of a C2 pedicle screw and C2 pars screw after cyclical testing and differentiate differences in stiffness pre- and post-cyclical loading of 3 different C1-C2 fixations. SUMMARY OF(More)
OBJECTIVE The biomechanical study was performed to investigate the effect of a novel pedicle screw anchor in increasing the pullout strength of pedicle screws. METHODS Ten lumbar vertebral bodies with a weighted average T-score of -2.13 were used. Pedicle screws of 4.5 mm diameter and 25 mm length were inserted in to one pedicle randomly and matched with(More)
BACKGROUND Lateral lumbar interbody fusion is powerful for correcting degenerative conditions, yet sagittal correction remains limited by anterior longitudinal ligament tethering. Although lordosis has been restored via ligament release, biomechanical consequences remain unknown. Investigators examined radiographic and biomechanical of ligament release for(More)
OBJECTIVE The lateral transpsoas approach to the lumbar spine is a well-defined procedure for the management of discogenic spinal pathology necessitating surgical intervention. Intervertebral device subsidence is a postoperative clinical risk that can lead to recurrence of symptomatic pathology and the need for surgical reintervention. The current study was(More)
OBJECT Abnormal sacral slope (SS) has shown to increase progression of spondylolisthesis, yet there exists a paucity in biomechanical studies investigating its role in the correction of adult spinal deformity, its influence on lumbosacral shear, and its impact on the instrumentation selection process. This in vitro study investigates the effect of SS on 3(More)
STUDY DESIGN Survey of spine surgeons and biomechanical comparison of screw pullout forces. OBJECTIVE To investigate what may be a suboptimal practice regularly occurring in spine surgery. SUMMARY OF BACKGROUND DATA In order for a tap to function in its intended manner, the pitch of the tap should be the same as the pitch of the screw. Undertapping has(More)