B. Ruthrotha Selvi

Learn More
Although the brain functions of specific acetyltransferases such as the CREB-binding protein (CBP) and p300 have been well documented using mutant transgenic mice models, studies based on their direct pharmacological activation are still missing due to the lack of cell-permeable activators. Here we present a small-molecule (TTK21) activator of the histone(More)
The acetylation of histone and non-histone proteins controls a great deal of cellular functions, thereby affecting the entire organism, including the brain. Acetylation modifications are mediated through histone acetyltransferases (HAT) and deacetylases (HDAC), and the balance of these enzymes regulates neuronal homeostasis, maintaining the pre-existing(More)
Neurodegenerative diseases, such as polyglutamine-related diseases, amyotrophic lateral sclerosis, and Alzheimer's disease are accompanied by transcriptional dysfunctions, leading to neuronal death. It is becoming more evident that the chromatin acetylation status is impaired during the lifetime of neurons, by a common mechanism related to the loss of(More)
Long-term monthly flow forecasts are essential for decision making in a river basin system. Many studies have already been reported on monthly as well as seasonal forecast using artificial neural networks (ANNs). This study demonstrates that monthly forecasts can be significantly improved if the input variables in ANN models are chosen with due(More)
Coactivator-associated arginine methyltransferase (CARM1/PRMT4)-mediated transcriptional coactivation and arginine methylation is known to regulate various tissue-specific differentiation events. Although CARM1 is expressed in the neural crest region in early development, coinciding with early neuronal progenitor specification, the role of CARM1 in any(More)
  • 1