Learn More
Although many failed surrogate markers are provided in the literature, inflammation may contribute to the outcome of ischemic stroke. In 50 consecutive patients with acute ischemic stroke, in the absence of symptoms and signs of concomitant infection, we evaluated a panel of biomarkers reported to be variably associated with brain ischemia, and correlate(More)
Glucocorticoids (GCs) exert via glucocorticoid receptors (GRs) potent anti-inflammatory and immunosuppressive effects. Emerging evidence indicates that an inflammatory process is involved in dopaminergic nigro-striatal neuronal loss in Parkinson's disease. We here report that the GR deficiency of transgenic (Tg) mice expressing GR antisense RNA from early(More)
Emerging evidence points to reactive glia as a pivotal factor in Parkinson's disease (PD) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned mouse model of basal ganglia injury, but whether astrocytes and microglia activation may exacerbate dopaminergic (DAergic) neuron demise and/or contribute to DAergic repair is presently the subject of(More)
Post-menopausal estrogen deficiency is recognized to play a pivotal role in the pathogenesis of a number of age-related diseases in women, such as osteoporosis, coronary heart disease and Alzheimer's disease. There are also sexual differences in the progression of diseases associated with the nigrostriatal dopaminergic system, such as Parkinson's disease, a(More)
BACKGROUND Dopamine-synthesizing (dopaminergic, DA) neurons in the ventral midbrain (VM) constitute a pivotal neuronal population controlling motor behaviors, cognitive and affective brain functions, which generation critically relies on the activation of Wingless-type MMTV integration site (Wnt)/β-catenin pathway in their progenitors. In Parkinson's(More)
In Parkinson's disease (PD), neurogenesis is impaired in the subventricular zone (SVZ) of postmortem human PD brains, in primate nonhuman and rodent models of PD. The vital role of Wingless-type MMTV integration site (Wnt)/β-catenin signaling in the modulation of neurogenesis, neuroprotection, and synaptic plasticity coupled to our recent findings(More)
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the presence of tremor, muscle rigidity, slowness of voluntary movements and postural instability. One of the pathological hallmarks of PD is loss of dopaminergic (DAergic) neurons in the subtantia nigra pars compacta (SNpc). The cause and mechanisms underlying the demise of(More)
The roles of Wnts in neural development, synaptogenesis, and cancer are generally well characterized. Nonetheless, evidence exists that interactions between the immune and nervous systems control major brain regenerative processes ranging from physiological or pathological (reparative) regeneration to neurogenesis and synaptic plasticity. Recent studies(More)
We showed previously that exogenous iron potentiated nitric oxide (NO) donor-induced release of striatal dopamine (DA) in freely moving rats, using microdialysis. In this study, the increase in dialysate DA induced by intrastriatal infusion of the NO-donor 3-morpholinosydnonimine (SIN-1, 1.0 mM for 180 min) was scarcely affected by Ca2+ omission.(More)
Parkinsons'disease (PD), a common neurodegenerative disorder, is characterized by progressive loss of dopaminergic (DAergic) neurons in the subtantia nigra pars compacta (SNpc) and gliosis. The cause and mechanisms underlying the demise of nigrostriatal DAergic neurons are not completely clarified, but interactions between genes and environmental factors(More)