B J Thevenin

Learn More
Analytical and numerical models were developed to describe fluorescence resonance energy transfer (RET) in crowded biological membranes. It was assumed that fluorescent donors were linked to membrane proteins and that acceptors were linked to membrane lipids. No restrictions were placed on the location of the donor within the protein or the partitioning of(More)
Malaria-parasitized erythrocytes have increased endothelial adherence due to exposure of previously buried intramembranous sites of band 3. Because sickle erythrocytes also show increased adhesiveness and because the membrane portion of band 3 is aggregated in both types of cells, we examined the role of band 3 in sickle cell adhesiveness. Synthetic(More)
A cleavable cross-linking reagent, sulfosuccinimidyl-2(7-azido-4-methylcoumarin-3-acetamido)-ethyl-1,3'- dithiopropionate (SAED), was synthesized for the selective transfer of a coumarin fluorophore from a 'donor' protein to a position near the binding site of an interacting 'target' protein. SAED contains a terminal N-sulfosuccinimidyl ester for(More)
Interactions between the erythrocyte membrane and its skeleton are mediated primarily by binding of cytoskeletal components to a conformationally sensitive structure, the cytoplasmic domain of band 3 (cdb3). To examine the nanosecond segmental motions of cdb3, band 3 was labeled selectively by fluorescein maleimide at Cys-201 near the proposed hinge in cdb3(More)
Ca2+ release from sarcoplasmic reticulum during excitation--contraction coupling is likely to be mediated by conformational changes in the foot protein moiety of the triadic vesicles. As a preparative step toward the studies of dynamic conformational changes in the foot protein moiety, we have developed a new method that permits specific labeling of the(More)
Single-photon radioluminescence (SPR), the excitation of fluorophores by short-range beta-decay electrons, was developed for the measurement of submicroscopic distances. The cytoplasmic domain of band 3 (cdb3) is the primary, multisite anchorage for the erythrocyte skeleton. To begin to define the membrane arrangement of the highly asymmetrical cdb3(More)
Time-resolved anisotropy was utilized to detect nanosecond segmental motions of the band 3 intramembrane domain. Band 3 at lysine 430 was fluorescently labeled in ghost membranes by fluorescein or eosin maleimide treatment of intact human erythrocytes followed by hypotonic lysis. Single lifetimes for fluorescein (3.8-4.1 ns) and eosin (3.2-3.4 ns) were(More)
  • 1