B. J. Minsley

Learn More
We propose a 2D/3D forward modelling and inversion package to invert direct current (DC)-resistivity, time-domain induced polarization (TDIP), and frequency-domain induced polarization (FDIP) data. Each cell used for the discretization of the 2D/3D problems is characterized by a DC-resistivity value and a chargeability or complex conductivity for TDIP/FDIP(More)
Details of Earth’s shallow subsurface—a key component of the critical zone (CZ)—are largely obscured because making direct observations with sufficient density to capture natural characteristic spatial variability in physical properties is difficult. Yet this inaccessible region of the CZ is fundamental to processes that support ecosystems, society, and the(More)
Ordinary least squares is used to investigate the ability to detect changes in physical properties using Amplitude Versus Offset (AVO) information collected from seismic data. In order to characterize vertically aligned fractures within a reservoir, this method is extended to Azimuthal AVO (AVOA) analysis. Azimuthal AVO has the potential not only to detect(More)
Hydrogeophysical methods are presented that support the siting and monitoring of aquifer storage and recovery (ASR) systems. These methods are presented as numerical simulations in the context of a proposed ASR experiment in Kuwait, although the techniques are applicable to numerous ASR projects. Bulk geophysical properties are calculated directly from ASR(More)
Amplitude versus offset (AVO) analysis of seismic reflection data has been a successful tool in describing changes in rock properties along a reflector. This method is extended to azimuthal AVO (AVOA) in order to characterize vertically aligned fractures within a reservoir, which can be important fluid migration pathways. AVOA analysis is performed on(More)
We present the details of a new method for determining the reflection and scattering characteristics of seismic energy from subsurface fractured formations. The method is based upon observations we have made from 3D finite difference modeling of the reflected and scattered seismic energy over discrete systems of vertical fractures. Regularly spaced,(More)
We present the details of a new method for determining the reflection and scattering characteristics of seismic energy from subsurface fractured formations. The method is based upon observations we have made from 3D finite difference modeling of the reflected and scattered seismic energy over discrete systems of vertical fractures. Regularly spaced,(More)
We investigate the use of non-linear constraints for geophysical inverse problems, with specific examples applied to source inversion of self-potential data. Typical regularization methods often produce smooth solutions by introducing a quadratic term in the objective function that minimizes the L2 norm of a low-order differential operator applied to the(More)
  • 1