Learn More
We present measurements of the semileptonic decays B--->D0tau-nutau, B--->D*0tau-nutau, B0-->D+tau-nutau, and B0-->D*+tau-nutau, which are potentially sensitive to non-standard model amplitudes. The data sample comprises 232x10(6) Upsilon(4S)-->BB decays collected with the BABAR detector. From a combined fit to B- and B0 channels, we obtain the branching(More)
This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version. Copyright and all moral rights to the version of the paper(More)
Citation Aubert, B. et al. " Measurement and interpretation of moments in inclusive semileptonic decays B[over-bar]->X[subscript c]l-nu [over-bar]. Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
We present a study of B decays into semileptonic final states containing charged and neutral D1(2420) and D_{2};{*}(2460). The analysis is based on a data sample of 208 fb;{-1} collected at the Upsilon(4S) resonance with the BABAR detector at the PEP-II asymmetric-energy B factory at SLAC. With a simultaneous fit to four different decay chains, the(More)
Data from the Sudbury Neutrino Observatory have been used to constrain the lifetime for nucleon decay to "invisible" modes, such as n-->3nu. The analysis was based on a search for gamma rays from the deexcitation of the residual nucleus that would result from the disappearance of either a proton or neutron from 16O. A limit of tau(inv)>2 x 10(29) yr is(More)
The photon spectrum in the inclusive electromagnetic radiative decays of the B meson, B → X(s)γ plus B → X(d)γ, is studied using a data sample of (382.8 ± 4.2) × 10(6)Υ(4S) → BB decays collected by the BABAR experiment at SLAC. The spectrum is used to extract the branching fraction B(B → X(s)γ) = (3.21 ± 0.33) × 10(-4) for E(γ) >1.8 GeV and the direct CP(More)