Learn More
Three-dimensional numerical simulations with COBOLD, a new radiation hydrodynamics code, result in a dynamic, thermally bifurcated model of the non-magnetic chromosphere of the quiet Sun. The 3-D model includes the middle and low chromosphere, the photosphere, and the top of the convection zone, where acoustic waves are excited by convective motions. While(More)
High-resolution images of the solar surface show a granulation pattern of hot rising and cooler downward-sinking material – the top of the deep-reaching solar convection zone. Convection plays a role for the thermal structure of the solar interior and the dynamo acting there, for the stratification of the photosphere, where most of the visible light is(More)
Context. Europium is an almost pure r-process element, which may be useful as a reference in nucleocosmochronology. Aims. To determine the photospheric solar abundance using CO5BOLD 3-D hydrodynamical model atmospheres. Methods. Disc-centre and integrated-flux observed solar spectra are used. The europium abundance is derived from the equivalent width(More)
In the last decade, the photospheric solar metallicity as determined from spectroscopy experienced a remarkable downward revision. Part of this effect can be attributed to an improvement of atomic data and the inclusion of NLTE computations, but also the use of hydrodynamical model atmospheres seemed to play a role. This “decrease” with time of the(More)
Within the next few years, GAIA and several instruments aiming to image extrasolar planets will be ready. In parallel, low-mass planets are being sought around red dwarfs, which offer more favourable conditions, for both radial velocity detection and transit studies, than solar-type stars. In this paper, the authors of a model atmosphere code that has(More)
We present the first hydrodynamic, multi-dimensional simulations of He-shell flash convection. Specifically, we investigate the properties of shell convection at a time immediately before the He-luminosity peak during the 15 thermal pulse of a stellar evolution track with initially two solar masses and metallicity Z = 0.01. This choice is a representative(More)
Based on detailed 2D numerical radiation hydrodynamics (RHD) calculations of time-dependent compressible convection, we have studied the dynamics and thermal structure of the convective surface layers of solar-type stars. The RHD models provide information about the convective efficiency in the superadiabatic region at the top of convective envelopes and(More)
With numerical experiments we explore the feasibility of using high frequency waves for probing the magnetic fields in the photosphere and the chromosphere of the Sun. We track a plane-parallel, monochromatic wave that propagates through a non-stationary, realistic atmosphere, from the convection-zone through the photosphere into the magnetically dominated(More)