Learn More
The objective of this research was to screen and search for suitable plant species to phytoextract mercury-contaminated soil. Our effort focused on using some of the known metal-accumulating wild-type plants since no natural plant species with mercury-hyperaccumulat ing properties has yet been identified. Three plant species were evaluated for their uptake(More)
The plant uptake of emerging organic contaminants such as pharmaceuticals and personal care products (PPCPs) is receiving increased attention. Biosolids from municipal wastewater treatment have been previously identified as a major source for PPCPs. Thus, plant uptake of PPCPs from biosolids applied soils needs to be understood. In the present study, the(More)
The purpose of this study was to investigate solid-phase distribution, transformation, and bioavailability of Cr in Cr(III) and Cr(VI) contaminated soils. The effects of EDTA treatment on solid-phase distribution of Cr in soils were also examined. The results show that Cr in both initially Cr(III)- and Cr(VI)-contaminated soils was mainly present in the(More)
A recently recognized hyperaccumulator plant, Chinese brake fern (Pteris vittata), has been found to extract very high concentration of arsenic from arsenic-contaminated soil. Chromium usually is a coexisting contaminant with arsenic in most contaminated soils. The potential application of ferns for phytoremediation of chromium(III)- and(More)
Conventional methods for soil sampling and analysis for soil variability in chemical characteristics are too time-consuming and expensive for multi-seasonal monitoring over large-scale areas. Hence, the objectives of this study are: 1) to determine changes in chemical concentrations of soils that are amended with treated sewage sludge; and 2) to determine(More)
  • 1