Learn More
Neutrophils are the most abundant white blood cells in circulation, and patients with congenital neutrophil deficiencies suffer from severe infections that are often fatal, underscoring the importance of these cells in immune defense. In spite of neutrophils' relevance in immunity, research on these cells has been hampered by their experimentally(More)
Antigenic variation in Plasmodium falciparum malaria is mediated by transcriptional switches between different members of the multicopy var gene family. Each var gene encodes a member of a group of heterogeneous surface proteins collectively referred to as PfEMP1. Mutually exclusive expression ensures that an individual parasite only transcribes a single(More)
Antibodies can protect from Plasmodium falciparum (Pf) infection and clinical malaria disease. However, in the absence of constant reexposure, serum immunoglobulin (Ig) levels rapidly decline and full protection from clinical symptoms is lost, suggesting that B cell memory is functionally impaired. We show at the single cell level that natural Pf infection(More)
A fundamental yet poorly understood aspect of gene regulation in eukaryotic organisms is the mechanisms that control allelic exclusion and mutually exclusive gene expression. In the malaria parasite Plasmodium falciparum, this process regulates expression of the var gene family--a large, hypervariable repertoire of genes that are responsible for the ability(More)
Coming soon to a doctor’s surgery near you? Hopes placed on the sequencing of ‘the’ human genome and the subsequent identification of many single-nucleotide polymorphisms (SNPs) have turned out to be misguided, as the causes of common diseases like cancer and heart disease have proven too complex to be addressed with simple SNP searches. Also, large-scale(More)
Malaria, caused by the parasite Plasmodium falciparum, is responsible for substantial morbidity, mortality and economic losses in tropical regions of the world. Pregnant women are exceptionally vulnerable to severe consequences of the infection, due to the specific adhesion of parasite-infected erythrocytes in the placenta. This adhesion is mediated by a(More)
The human malaria parasite, Plasmodium falciparum, maintains a persistent infection altering the proteins expressed on the surface of the infected red blood cells, thus avoiding the host immune response. The primary surface antigen, a protein called PfEMP1, is encoded by a multicopy gene family called var. Each individual parasite only expresses a single(More)
Neutrophils play an essential role in the initial stages of inflammation by balancing pro- and antiinflammatory signals. Among these signals are the production of proinflammatory cytokines and the timely initiation of antiinflammatory cell death via constitutive apoptosis. Here we identify ataxia-telangiectasia mutated (ATM) kinase as a modulator of these(More)
Cellular drug delivery can improve efficacy and render intracellular pathogens susceptible to compounds that cannot permeate cells. The transport of physiologically active compounds across membranes into target cells can be facilitated by cell-penetrating peptides (CPPs), such as oligoarginines. Here, we investigated whether intracellular delivery of the(More)
Neutrophils are essential innate immune cells whose responses are crucial in the clearance of invading pathogens. Neutrophils can respond to infection by releasing neutrophil extracellular traps (NETs). NETs are formed of chromatin and specific granular proteins and are released after execution of a poorly characterized cell death pathway. Here, we show(More)