Błażej Rychlik

Learn More
Neuronal systems for calcium homeostasis are crucial for neuronal development and function and may also contribute to selective neuronal vulnerability in adverse conditions such as exposure to excitatory amino acids or anoxia, and in neurodegenerative diseases. Previous work demonstrated the presence and differential distribution of calcium-binding proteins(More)
Cell culture media (RPMI 1640, Dulbecco's Minimal Essential Medium and yeast extract-peptone-glucose medium) were found to oxidize dichlorodihydrofluorescein diacetate and dihydrorhodamine 123, and to generate spin adduct of 5,5'-dimethyl-1-pyrroline N-oxide, which indicates formation of reactive oxygen species (ROS). The production of ROS was light(More)
Although it is known that phenoxyacetic herbicides significantly affect the oxidative status of human erythrocytes, there is no direct evidence of their ability to induce free radical production. To demonstrate this phenomenon we investigated the effect of two commonly used phenoxyherbicides-sodium salt of 2,4-dichlorophenoxyacetic acid (2,4-D-Na) and(More)
Although there has been a large body of literature from animal studies concerning neuronal excitatory amino acid (EAA) receptors and their possible roles in brain development, function, and pathology, essentially no direct information on actions of EAAs in humans has previously been available. We now report on experiments in cell cultured human embryonic(More)
Babies born to mothers abusing the psychotomimetic drug phencyclidine (PCP), often show profound deficits in CNS function. It is now reported that PCP can cause progressive degeneration and death in human fetal cerebral cortical neurons in culture and sublethal levels of PCP can inhibit axon outgrowth. In cerebral cortical cell cultures established from 14(More)
The active transport of oxidized glutathione and glutathione S-conjugates has been demonstrated for the first time in erythrocytes and this cell remained the main subject of research on the "glutathione S-conjugate pump" for years. Further studies identifled the "glutathione S-conjugate pump" as multidrug resistance-associated protein (MRP). Even though(More)
Multidrug resistance (MDR) is a pathophysiological phenomenon employed by cancer cells which limits the prolonged and effective use of chemotherapeutic agents. MDR is primarily based on the over-expression of drug efflux pumps in the cellular membrane. Prominent examples of such efflux pumps, which belong to the ATP-binding cassette (ABC) superfamily of(More)
We employed human red blood cells as a model system to check the affinity of MRP1 (Multi-drug Resistance-associated Protein 1) towards fluorescein and a set of its carboxyl derivatives: 5/6-carboxyfluorescein (CF), 2′,7′-bis-(2-carboxyethyl)-5/6-carboxyfluorescein (BCECF) and calcein (CAL). We found significant differences in the characteristics of(More)
A hypothesis of the flippase nature of the glutathione S-conjugate transport is presented. Experimental premises for this hypothesis include interaction of glutathione S-conjugates with the membrane, as demonstrated by their effects on membrane fluidity, quenching of 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene fluorescence and induction of(More)
Over the past few decades, many different types of nanomedicines have been evaluated, both in vitro and in vivo. In general, nanomedicines are designed to improve the in vivo properties of low-molecular-weight (chemo-) therapeutic drugs, i.e. their biodistribution and the target site accumulation, and to thereby improve the balance between their efficacy(More)