Learn More
The elimination of water from the carboxyl group of protonated diglycine has been investigated by density functional theory calculations. The resulting structure is identical to the b(2) ion formed in the mass spectrometric fragmentation of protonated peptides (therefore named "b2" in this study). The most stable geometry of the fragment ion ("b2") is an(More)
The water-assisted tautomerization of glycine has been investigated at the B3LYP/6-31+G** level using supermolecules containing up to six water molecules as well as considering a 1:1 glycine-water complex embedded in a continuum. The conformations of the tautomers in this mechanism do not display an intramolecular H bond, instead the functional groups are(More)
The relative stabilities of glycine tautomers involved in the intramolecular proton transfer are investigated computationally by considering glycine-water complexes containing up to five water molecules. The supermolecule results are compared with continuum calculations. Specific solute-solvent interactions and solvent induced changes in the solute wave(More)
The Claisen rearrangement of 1-methyl-2-isopropyoxycarbonyl-6-propyl allyl vinyl ether catalyzed by copper(II) bisoxazoline (Cu-box) has been investigated using density functional theory. Both the phenyl- and tert-butyl-substituted Cu-box systems have been studied. Three different reaction media (vacuum, CH2Cl2, CH3CN) have been considered. In vacuum, the(More)
  • 1