Bénédicte Mascrez

Learn More
Current mouse gene targeting technology is unable to introduce somatic mutations at a chosen time and/or in a given tissue. We report here that conditional site-specific recombination can be achieved in mice using a new version of the Cre/lox system. The Cre recombinase has been fused to a mutated ligand-binding domain of the human estrogen receptor (ER)(More)
The evolution of digits was an essential step in the success of tetrapods. Among the key players, Hoxd genes are coordinately regulated in developing digits, where they help organize growth and patterns. We identified the distal regulatory sites associated with these genes by probing the three-dimensional architecture of this regulatory unit in developing(More)
Hox genes are major determinants of the animal body plan, where they organize structures along both the trunk and appendicular axes. During mouse limb development, Hoxd genes are transcribed in two waves: early on, when the arm and forearm are specified, and later, when digits form. The transition between early and late regulations involves a functional(More)
We have engineered a mouse mutation that specifically deletes the C-terminal 18 amino acid sequence of the RXRalpha protein. This deletion corresponds to the last helical alpha structure (H12) of the ligand-binding domain (LBD), and includes the core of the Activating Domain of the Activation Function 2 (AF-2 AD core) that is thought to be crucial in(More)
We previously identified novel human ets-1 transcripts in which the normal order of exons is inverted, and demonstrated that although the order of exons is different than in the genomic DNA, splicing of these exons out of order occurs in pairs using genuine splice sites (1). Here we determine the structure of these novel transcripts, showing that they(More)
We have engineered a mouse mutation that specifically deletes the C-terminal 18 amino acid sequence of the RXRα protein. This deletion corresponds to the last helical α structure (H12) of the ligand-binding domain (LBD), and includes the core of the Activating Domain of the Activation Function 2 (AF-2 AD core) that is thought to be crucial in mediating(More)
Using genetic and pharmacological approaches, we demonstrate that both RARgamma/RXRalpha heterodimers involved in repression events, as well as PPARbeta(delta)/RXRalpha heterodimers involved in activation events, are cell-autonomously required in suprabasal keratinocytes for the generation of lamellar granules (LG), the organelles instrumental to the(More)
To determine the functions of retinoic acid receptors RAR and RXR, we have systematically knocked-out their genes by homologous recombination in the embryonic stem cells and generated null-mutant mice. This approach has allowed us to perform a genetic dissection of the retinoic acid signalling pathway.
We have engineered a mouse mutation that specifically deletes most of the RXR alpha N-terminal A/B region, which includes the activation function AF-1 and several phosphorylation sites. The homozygous mutants (RXR alpha af1(o)), as well as compound mutants that further lack RXR beta and RXR gamma, are viable and display a subset of the abnormalities(More)
We show that mice expressing retinoid X receptor beta (RXRbeta) impaired in its transcriptional activation function AF-2 (Rxrb(af20) mutation) do not display the spermatid release defects observed in RXRbeta-null mutants, indicating that the role of RXRbeta in spermatid release is ligand-independent. In contrast, like RXRbeta-null mutants, Rxrb(af20) mice(More)