Bénédicte Cauwe

Learn More
Matrix metalloproteinases (MMPs), originally discovered to function in the breakdown of extracellular matrix proteins, have gained the status of regulatory proteases in signaling events by liganding and processing hormones, cytokines, chemokines, adhesion molecules and other membrane receptors. However, MMPs also cleave intracellular substrates and have(More)
Matrix metalloproteinases (MMPs) constitute a family of more than 20 endopeptidases. Identification of specific matrix and non-matrix components as MMP substrates showed that, aside from their initial role as extracellular matrix modifiers, MMPs play significant roles in highly complex processes such as the regulation of cell behavior, cell-cell(More)
Murine models are a crucial component of gut microbiome research. Unfortunately, a multitude of genetic backgrounds and experimental setups, together with inter-individual variation, complicates cross-study comparisons and a global understanding of the mouse microbiota landscape. Here, we investigate the variability of the healthy mouse microbiota of five(More)
Foxp3⁺ regulatory T (Treg) cells are a crucial immunosuppressive population of CD4⁺ T cells, yet the homeostatic processes and survival programs that maintain the Treg cell pool are poorly understood. Here we report that peripheral Treg cells markedly alter their proliferative and apoptotic rates to rapidly restore numerical deficit through an interleukin(More)
The action radius of matrix metalloproteinases or MMPs is not restricted to massive extracellular matrix (ECM) degradation, it extends to the proteolysis of numerous secreted and membrane-bound proteins. Although many instances exist in which cells disintegrate, often in conjunction with induction of MMPs, the intracellular MMP substrate repertoire or(More)
Matrix metalloproteinases (MMPs) are classically associated with the turnover of secreted structural and functional proteins. Although MMPs have been shown to process also a kaleidoscope of membrane-associated substrates, little is known about the processing of intracellular proteins by MMPs. Physiological and pathological cell apoptosis, necrosis and tumor(More)
The use of genetically modified mice, i.e. transgenic as well as gene knockout (KO) and knock-in mice, has become an established tool to study gene function in many animal models for human diseases. However, a gene functions in a particular genomic context. This implies the importance of a well-defined homogenous genetic background for the analysis and(More)
In Europe, Puumala virus and Dobrava virus are the major hantaviruses that cause hemorrhagic fever with renal syndrome in humans. As hantaviruses can cause diseases with high morbidity and mortality rates, and as to date there is no specific treatment, efforts are concentrated on the development of vaccines. In this study we characterized the immunogenicity(More)
Autoimmune diseases of the eye, exemplified by Beh cet disease and Vogt-Koyanagi-Harada disease, are a major cause of blindness. We studied interphotoreceptor retinoid-binding protein (IRBP), a dominant autoimmune antigen in the eye. Aqueous humour samples from 28 patients with active uveitis were analysed for immunoglobulin G (IgG) content as a marker for(More)
Gelatinase B/matrix metalloproteinase-9 (MMP-9) is a key enzyme involved in inflammatory, hematological, vascular and neoplastic diseases. In previous studies, we explored the intracellular substrate set or 'degradome' of MMP-9 and found many systemic autoantigens as novel intracellular gelatinase B substrates. Little is known, however, about the functional(More)