Learn More
We investigated the effect of diazoxide on neuronal survival in primary cultures of rat cortical neurons against oxygen-glucose deprivation (OGD). Diazoxide pre-treatment induced delayed pre-conditioning and almost entirely attenuated the OGD-induced neuronal death. Diazoxide inhibited succinate dehydrogenase and induced mitochondrial depolarization, free(More)
Cortical spreading depression (CSD) has been documented to confer ischemic tolerance on brain. Although nitric oxide (NO) is a crucial mediator in preconditioning under certain circumstances, the role of NO in CSD-induced neuroprotection is unclear. We examined the effect of L-NAME, an inhibitor of NO synthase, on CSD-induced tolerance against transient(More)
Selective activation of mitoK(ATP) channels can protect the brain or cultured neurons against a variety of anoxic or metabolic challenges. However, little is known about the subunit composition or functional regulation of the channel itself. In the present study, we sought to characterize the mitoK(ATP) channel in the mouse brain using overlapping(More)
BMS-191095, reportedly a selective mitoK(ATP) channel opener which is free from the known side effects of the prototype mitoK(ATP) channel opener diazoxide, induced acute and delayed preconditioning against glutamate excitotoxicity and delayed preconditioning against oxygen-glucose deprivation in primary cultures of rat cortical neurons. BMS-191095 dose(More)
1,3-Dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2H-benzimidazol-2-one (NS1619), a potent activator of the large conductance Ca2+ activated potassium (BK(Ca)) channel, has been demonstrated to induce preconditioning (PC) in the heart. The aim of our study was to test the delayed PC effect of NS1619 in rat cortical neuronal cultures(More)
Mitochondrial ATP-sensitive potassium (mitoK(ATP)) channel openers protect the piglet brain against ischemic stress. Effects of mitoK(ATP) channel agonists on isolated mitochondria, however, have not been directly examined. We investigated the effects of K(ATP) channel openers and blockers on membrane potential and on the production of reactive oxygen(More)
We examined the role of cyclooxygenase-2 in the development of ischemic tolerance induced by cortical spreading depression against transient, focal brain ischemia. Cortical spreading depression was continuously induced for 2 h with topical KCl (13+/-1 depolarizations/2 h) in male Wistar rats. At 1, 2, 3, 4, and 5 days following recovery, the middle cerebral(More)
Cerebral microvascular endothelial cells (CMVECs) have recently been implicated as targets of excitotoxic injury by l-glutamate (l-glut) or N-methyl-d-aspartate (NMDA) in vitro. However, high levels of l-glut do not compromise the function of the blood-brain barrier in vivo. We sought to determine whether primary cultures of rat and piglet CMVECs or(More)
Adrenomedullin (AM) is an important vasodilator in cerebral circulation, and cerebral endothelial cells are a major source of AM. This in vitro study aimed to determine the AM-induced changes in blood-brain barrier (BBB) functions. AM administration increased, whereas AM antisense oligonucleotide treatment decreased transendothelial electrical resistance.(More)
Mitochondrial responses to ischemic stress play an important role in necrosis and apoptosis of brain cells. Recent studies using several different experimental preparations have shown that activation of ATP-sensitive potassium channels in mitochondria (mitoK(ATP) channels) is able to protect neurons and astroglia against injury and death. Thus, targeting of(More)