Bärbel Rethfeld

Learn More
Laser ablation in an ambient gas is nowadays used in a growing number of applications, such as chemical analysis and pulsed laser deposition. Despite the many applications, the technique is still poorly understood. Therefore models describing the material evolution in time during short pulse laser irradiation can be helpful to unravel the puzzle and finally(More)
The extreme cooling rates in material processing can be achieved in a number of current and emerging femtosecond laser techniques capable of highly localized energy deposition. The mechanisms of rapid solidification of a nanoscale region of a metal film transiently melted by a localized photoexcitation are investigated in a large-scale atomistic simulation.(More)
The present study focuses on the role of mass removal mechanisms in ns-laser ablation. A copper sample is placed in argon, initially set at standard pressure and temperature. Calculations are performed for a 6 ns laser pulse with a wavelength of 532 nm and laser fluences up to 10 J/cm 2. The transient behavior in and above the copper target is described by(More)
  • 1