Bálint Náfrádi

Learn More
We report on the acid ethylenedithiotetrathiafulvaleneamidoglycine (EDT-TTF-CO-NH-CH(2)-CO(2)H; 1; EDT-TTF=ethylenedithiotetrathiafulvalene) and the 1:1 adduct [(EDT-TTF)(·+)-CO-NH-CH(2)-(CO(2))(-)][(EDT-TTF)-CO-NH-CH(2)-(CO(2)H)]·CH(3)OH (2), a new type of hydrogen-bonded, 1:1 acid/zwitterion hybrid embrace of redox peptidics into a two-dimensional(More)
The surface of a material is not only a window into its bulk physical properties, but also hosts unique phenomena important for understanding the properties of a solid as a whole. Surface sensitive techniques, like ARPES (Angle-resolved photoemission spectroscopy), STM (Scanning tunneling microscopy), AFM (Atomic force microscopy), pump-probe optical(More)
Here we report another surprising feature of the methylammonium metal halide material family, the phototunability of the diode response of a heterojunction made of CH3NH3PbI3 and its close relative, CH3NH3SnI3. In the dark state the device behaves as a diode, with the Sn homologue acting as the "p" side. The junction is extremely sensitive to illumination.(More)
We report the development of the frequency-modulation (FM) method for measuring electron spin resonance (ESR) absorption in the 210- to 420GHz frequency range. We demonstrate that using a high-frequency ESR spectrometer without resonating microwave components enables us to overcome technical difficulties associated with the FM method due to nonlinear(More)
The time-window for processing electron spin information (spintronics) in solid-state quantum electronic devices is determined by the spin-lattice and spin-spin relaxation times of electrons. Minimizing the effects of spin-orbit coupling and the local magnetic contributions of neighbouring atoms on spin-lattice and spin-spin relaxation times at room(More)
The electron spin lifetime in an assembly of chemically synthesized graphene sheets was found to be extremely sensitive to oxygen. Introducing small concentrations of physisorbed O2 onto the graphene surface reduced the exceptionally long 140 ns electron spin lifetime by an order of magnitude. This effect was completely reversible: Removing the O2 by using(More)
In the antiferromagnetic ground state, below TN ≃ 5.7 K, Ca2CoSi2O7 exhibits strong magnetoelectric coupling. For a symmetry-consistent theoretical description of this multiferroic phase, precise knowledge of its crystal structure is a prerequisite. Here we report the results of single-crystal neutron diffraction on Ca2CoSi2O7 at temperatures between 10 and(More)