Bálint Náfrádi

Learn More
The surface of a material is not only a window into its bulk physical properties, but also hosts unique phenomena important for understanding the properties of a solid as a whole. Surface sensitive techniques, like ARPES (Angle-resolved photoemission spectroscopy), STM (Scanning tunneling microscopy), AFM (Atomic force microscopy), pump-probe optical(More)
The time-window for processing electron spin information (spintronics) in solid-state quantum electronic devices is determined by the spin-lattice and spin-spin relaxation times of electrons. Minimizing the effects of spin-orbit coupling and the local magnetic contributions of neighbouring atoms on spin-lattice and spin-spin relaxation times at room(More)
The demand for ever-increasing density of information storage and speed of manipulation boosts an intense search for new magnetic materials and novel ways of controlling the magnetic bit. Here, we report the synthesis of a ferromagnetic photovoltaic CH3NH3(Mn:Pb)I3 material in which the photo-excited electrons rapidly melt the local magnetic order through(More)
The hybrid halide perovskites, the very performant compounds in photovoltaic applications, possess large Seebeck coefficient and low thermal conductivity making them potentially interesting high figure of merit (ZT) materials. For this purpose one needs to tune the electrical conductivity of these semiconductors to higher values. We have studied the(More)
  • 1