Bálint Balázs

Learn More
In the last decades, several gene expression-based predictors of clinical behavior were developed for breast cancer. A common feature of these is the use of multiple genes to predict hormone receptor status and the probability of tumor recurrence, survival or response to chemotherapy. We developed an online analysis tool to compute ER and HER2 status,(More)
We present a plane-scanning RESOLFT [reversible saturable/switchable optical (fluorescence) transitions] light-sheet (LS) nanoscope, which fundamentally overcomes the diffraction barrier in the axial direction via confinement of the fluorescent molecular state to a sheet of subdiffraction thickness around the focal plane. To this end, reversibly switchable(More)
The goal of this analysis was to develop a computational tool that integrates the totality of gene expression, DNA copy number, and sequence abnormalities in individual cancers in the framework of biological processes. We used the hierarchical structure of the gene ontology (GO) database to create a reference network and projected mRNA expression, DNA copy(More)
Despite its importance for understanding human infertility and congenital diseases, early mammalian development has remained inaccessible to in toto imaging. We developed an inverted light-sheet microscope that enabled us to image mouse embryos from zygote to blastocyst, computationally track all cells and reconstruct a complete lineage tree of mouse(More)
Tackling modern cell and developmental biology questions requires fast 3D imaging with sub-cellular resolution over extended periods of time. Fluorescence microscopy has emerged as a powerful tool to image biological samples with high spatial and temporal resolution with molecular specificity. In particular, the highly efficient illumination and detection(More)
  • 1