Azadeh Pourmir

Learn More
Recombinant protein expression in the chloroplasts of green algae has recently become more routine; however, the heterologous expression of multiple proteins or complete biosynthetic pathways remains a significant challenge. Here, we show that a modified DNA Assembler approach can be used to rapidly assemble multiple-gene biosynthetic pathways in yeast and(More)
Microalgae have received significant attention recently as a potential low-cost host for the production of next-generation biofuels and natural products. Here we show that the chloroplast genome of the eukaryotic green microalga Chlamydomonas reinhardtii can be genetically engineered to produce xylitol through the introduction of a gene encoding a xylose(More)
The green alga, Chlamydomonas reinhardtii, is a model organism used in the study of photosynthesis and biotechnological research. Despite its importance, a complete set of genetic tools has yet to be developed. Here, we report the development of a new method for constructing a multi-gene pathway in Saccharomyces cerevisiae and integrating the assembled(More)
Directed evolution has become a well-established tool for improving proteins and biological systems. A critical aspect of directed evolution is the selection of a suitable host organism for achieving functional expression of the target gene. To date, most directed evolution studies have used either Escherichia coli or Saccharomyces cerevisiae as a host;(More)
  • 1