• Publications
  • Influence
Biodegradation of fibrillated oil palm trunk fiber by a novel thermophilic, anaerobic, xylanolytic bacterium Caldicoprobacter sp. CL-2 isolated from compost.
Oil palm trunk (OPT) is one of the most promising lignocellulosic bioresources. To develop effective biodegradation, thermophilic, anaerobic microorganisms were screened from bovine manure compostExpand
  • 6
  • 1
Characterization and high-quality draft genome sequence of Herbivorax saccincola A7, an anaerobic, alkaliphilic, thermophilic, cellulolytic, and xylanolytic bacterium.
An anaerobic, cellulolytic-xylanolytic bacterium, designated strain A7, was isolated from a cellulose-degrading bacterial community inhabiting bovine manure compost on Ishigaki Island, Japan, byExpand
  • 9
Characterization of an Anaerobic, Thermophilic, Alkaliphilic, High Lignocellulosic Biomass-Degrading Bacterial Community, ISHI-3, Isolated from Biocompost.
The generation of a complex microbial consortium is a promising approach for efficient biomass decomposition. An anaerobic thermophilic alkaliphilic microbial consortium with efficient degradationExpand
  • 4
Draft genome sequence data of Clostridium thermocellum PAL5 possessing high cellulose-degradation ability
Clostridium thermocellum is a potent cellulolytic bacterium. C. thermocellum strain PAL5, was derived from strain S14 that was isolated from bagasse paper sludge, possesses higherExpand
  • 2