Aysel Koç

  • Citations Per Year
Learn More
Periodontal ligament cells play a crucial role in the regeneration of periodontal tissues and an undifferentiated mesenchymal cell subset is thought to exist within this population. The aim of this study was to assess the osteogenic differentiation potential of human periodontal ligament fibroblasts (hPDLFs) in three dimensional (3D)-osteogenic culture(More)
Bone tissue is dependent on an efficient blood supply to ensure delivery of nutrients and oxygen. One method to acquire a vascular-engineered bone tissue could be the use of an angiogenic gene-activated scaffold. In the current study, porous chitosan/hydroxyapatite (C/HA) scaffolds were fabricated via freeze-drying with desired pore size, and then combined(More)
The objective of this study was to develop an engineered rat hyaline cartilage by culturing articular chondrocytes on three-dimensional (3D) macroporous poly(DL-lactic-co-glycolic acid) (PLGA) sponges under chondrogenic induction and microgravity bioreactor conditions. Experimental groups consisted of 3D static and dynamic cultures, while a single cell(More)
In this study, the osteogenic potential of rat bone marrow mesenchymal stem cells (rBM-MSCs) on a biomimetic poly(ε-caprolactone)/β-tricalcium phosphate (PCL/β-TCP) composite scaffold composed of parallel concentric fibrous membranes was evaluated in vitro and in vivo. PCL/β-TCP composite membranes were prepared by electrospinning and characterized by x-ray(More)
CMC and CMC-PVA were blended either with type I collagen, BSA or CS to obtain biocompatible membranes for evaluation as potential hepatocyte culture substrates. Pure and modified forms of CMC showed distinct surface, mechanical, and cell attachment properties. While the hydrophilicity decreased, the mechanical stability and the porosity of CMC membranes(More)
This study evaluates the suitability of a macroporous three-dimensional chitosan/hydroxyapatite (CS/HA) composite as a bone tissue engineering scaffold using MC3T3-E1 cells. The CS/HA scaffold was produced by freeze-drying, and characterized by means of SEM and FTIR. In vitro findings demonstrated that CS/HA supported attachment and proliferation of cells,(More)
  • 1