Ayonga Hereid

Learn More
This paper presents a methodology for achieving efficient multi-domain underactuated bipedal walking on compliant robots by formally emulating gaits produced by the Spring Loaded Inverted Pendulum (SLIP). With the goal of achieving locomotion that displays phases of double and single support, a hybrid system model is formulated that faithfully represents(More)
Hybrid zero dynamics (HZD) has emerged as a popular framework for dynamic and underactuated bipedal walking, but has significant implementation difficulties when applied to the high degrees of freedom present in humanoid robots. The primary impediment is the process of gait design-it is difficult for optimizers to converge on a viable set of virtual(More)
This paper employs the Human-Inspired Control framework in the formal design, optimization and implementation of controllers for 3D bipedal robotic walking. In this framework, controllers drive the robot to a low-dimensional representation, termed the partial hybrid zero dynamics, which is shaped by the parameters of the outputs describing human locomotion(More)
—We present a software synthesis method for speed-controlled robot walking based on supervisory control of a context-free Motion Grammar. First, we use Human-Inspired control to identify parameters for fixed speed walking and for transitions between fixed speeds, guaranteeing dynamic stability. Next, we build a Motion Grammar representing the discrete-time(More)
Hybrid zero dynamics (HZD) has emerged as a popular framework for the stable control of bipedal robotic gaits, but typically designing a gait's virtual constraints is a slow and undependable optimization process. To expedite and boost the reliability of HZD gait generation, we borrow methods from trajectory optimization to formulate a smoother and more(More)
Correct real-time software is vital for robots in safety-critical roles such as service and disaster response. These systems depend on software for locomotion, navigation, manipulation, and even seemingly innocuous tasks such as safely regulating battery voltage. A multiprocess software design increases robustness by isolating errors to a single process,(More)
Humanoid robots are designed with dozens of actuated joints to suit a variety of tasks, but walking controllers rarely make the best use of all of this freedom. We present a framework for maximizing the use of the full humanoid body for the purpose of stable dynamic locomotion, which requires no restriction to a planning template (e.g. LIPM). Using a hybrid(More)
This paper presents the methodology used to achieve efficient and dynamic walking behaviors on the prototype humanoid robotics platform, DURUS. As a means of providing a hardware platform capable of these behaviors, the design of DURUS combines highly efficient electromechanical components with “control in the loop” design of the leg(More)
— This paper presents a method for achieving stable periodic walking, consisting of phases of single and double support, on underactuated walking robots by embedding Spring Loaded Inverted Pendulum (SLIP) dynamics. Beginning with a SLIP model, the dynamics are stabilized to a constant energy level and periodic walking gaits are found; an equality constraint(More)