Ayato Hayashi

Learn More
End-to-side (ETS) nerve repair, in which the distal stump of a transected nerve is coapted to the side of an uninjured donor nerve, offers a technique for repair of peripheral nerve injuries where the proximal nerve stump is unavailable or a significant nerve gap exists. Details of animal models are explored including motor and sensory regeneration to(More)
We used peripheral nerve allografts, already employed clinically to reconstruct devastating peripheral nerve injuries, to study Schwann cell (SC) plasticity in adult mice. By modulating the allograft treatment modality we were able to study migratory, denervated, rejecting, and reinnervated phenotypes in transgenic mice whose SCs expressed GFP under(More)
Recent evidence supports the use of end-to-side neurorrhaphy for the treatment of certain peripheral nerve disorders. However, the mechanism by which nerves regenerate following this procedure is still unclear. To address this question, the authors designed a new end-to-side coaptation model in rats in which the donor nerves were uninjured. The regenerated(More)
End-to-side (ETS) nerve repair remains an area of intense scrutiny for peripheral nerve surgeon-scientists. In this technique, the transected end of an injured nerve, representing the "recipient" is sutured to the side of an uninjured "donor" nerve. Some works suggest that the recipient limb is repopulated with regenerating collateral axonal sprouts from(More)
OBJECTIVE Sensory nerve grafts are often used to reconstruct injured motor nerves, but the consequences of such motor/sensory mismatches are not well studied. Sensory nerves have more diverse fiber distributions than motor nerves and may possess phenotypically distinct Schwann cells. Putative differences in Schwann cell characteristics and pathway(More)
Madelung disease, also known as benign symmetrical lipomatosis, is a rare condition characterized by symmetrical diffuse adipose tissue in the neck, shoulders, and arms. The present report described the case of a 51-year-old man diagnosed with Madelung disease who presented with masses primarily in the neck. He had previously shown partial improvement after(More)
Transgenic mice whose axons and Schwann cells express fluorescent chromophores enable new imaging techniques and augment concepts in developmental neurobiology. The utility of these tools in the study of traumatic nerve injury depends on employing nerve models that are amenable to microsurgical manipulation and gauging functional recovery. Motor recovery(More)
Sensory nerve autografting is the standard of care for injuries resulting in a nerve gap. Recent work demonstrates superior regeneration with motor nerve grafts. Improved regeneration with motor grafting may be a result of the nerve's Schwann cell basal lamina tube size. Motor nerves have larger SC basal lamina tubes, which may allow more nerve fibers to(More)
Retrograde labeling has become an important method of evaluation for peripheral nerve regeneration after injury. We review the features of the commonly used retrograde tracers Fast Blue, Fluoro-Gold, and Fluoro Ruby in addition to the various application methods (conduit reservoir, intramuscular injection, and crystal powder application) and the techniques(More)
We propose that double-transgenic thy1-CFP(23)/S100-GFP mice whose Schwann cells constitutively express green fluorescent protein (GFP) and axons express cyan fluorescent protein (CFP) can be used to serially evaluate the temporal relationship between nerve regeneration and Schwann cell migration through acellular nerve grafts. Thy1-CFP(23)/S100-GFP and(More)